Quantitative Evolution of Morphology

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Evolution of Morphology G562 Geometric Morphometrics Quantitative evolution of morphology Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Properties of Brownian motion evolution of a single quantitative trait Most likely outcome = starting value Variance of the outcomes = number of step * (rate parameter)2 Outcomes are normally distributed (reason is Central Limit Theorem: each step adds a random variable, sum of many random variables forms a normal distribution) Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Brownian motion function for 2 traits ! #################################################################! #! # This function generates a Brownian-motion random walk! # in two traits for n number of generations. The default step! # variance is 1. Written by David Polly, 2008.! #! #################################################################! ! randomwalk <- function(n,r=1) { ! scores <- matrix(ncol=3, nrow=n)! scores[1,] <- c(1,0,0)! for (i in 2:n) {! scores[i,1]=i! scores[i,2]=scores[i-1,2]+rnorm(1, mean=0, sd=sqrt(r)) ! scores[i,3]=scores[i-1,3]+rnorm(1, mean=0, sd=sqrt(r)) ! }! return(as.data.frame(scores)) ! }! ! Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Quantitative evolutionary theory Change in phenotype Additive genetic variance – covariance matrix Selection coefficients can be: Random Selection coefficients Directional Stabilizing Etc. Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution, 33: 402-416. Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics To properly model evolution Additive genetic covariance matrix of traits for a single species Normally this is estimated from parent-offspring data Phenotypic covariance matrix (for a single species) can arguably be substituted Don’t use covariance matrix based on multiple species because this confounds phenotypic covariances and phylogenetic covariances Use this covariance matrix to construct shape space Estimate step rates from phylogeny (e.g., Martins and Hansen, 1997; Gingerich, 1993, etc.) Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Adaptive landscape Wright, 1932 (original concept for allele frequency and reproductive fitness) Simpson 1944 (phenotypic concept for macro evolution) Lande, 1976 (quantitative theory for phenotypes) Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Brownian motion analogous to evolution on a flat adaptive landscape where random bumps appear and disappear Shape model in PC scores in Procrustes distance from landmark space shape space ancestral (consensus) shape Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Directional selection analogous to a flat adaptive landscape that is tilted up in one direction Shape model in PC scores in Procrustes distance from landmark space shape space ancestral (consensus) shape Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Stabilizing selection analogous to classic adaptive peak Shape model in PC scores in Procrustes distance from landmark space shape space ancestral (consensus) shape Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Drift Perfectly flat landscape where change occurs by chance sampling from one generation to the next. Change is small and a function of population size (where population size is average number of breeding individuals in the species through the period of interest) Shape model in PC scores in Procrustes distance from landmark space shape space ancestral (consensus) shape Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics The curvature and slope of a divergence graph depend on the type of selection and the rate of evolution Rate Mode of selection Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Applied to hominin tooth shape Gómez-Robles, A. and P.D. Polly. 2012. Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. Evolution, 66: 1024-1043. Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Possible issues with this kind of modeling: • Does not model the gain or loss of features • Presumes that trait covariances don’t change • Presumes that evolutionary transitions in phenotypes are continuous Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics New Frontiers: Alternative approaches “Homology free” geometric methods that can accommodate gain and loss of features Non-linear shape spaces that can be used to model interactions of genetic, developmental, and environmental effect “Homology free” “Homology free” Homologous outline surface landmarks semilandmarks semilandmarks Polly, 2008 Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Estimated trajectory of pinniped calcaneum evolution Polly, P. D. 2008. Adaptive Zones and the Pinniped Ankle: A 3D Quantitative Analysis of Carnivoran Tarsal Evolution. In (E. Sargis and M. Dagosto, Eds.) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer: Dordrecht, The Netherlands. Department of Geological Sciences | Indiana University (c) 2012, P. David Polly G562 Geometric Morphometrics Further reading Adams, D. C. and M. L. Collyer. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63: 1143-1154. Arnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112-113: 9-32. Felsenstein, J. 1988. Phylogenetics and quantitative characters. Annual Review of Ecology and Systematics, 19: 445-471. Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution, 30: 314-334. Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology, 12: 343-354. Martins, E.P. and T.F. Hansen. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 148: 646-667. Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm Polly, P.D. 2008. Developmental dynamics and G-matrices: Can morphometric spaces be used to model evolution and development? Evolutionary Biology, 35, 83-96. Department of Geological Sciences | Indiana University (c) 2012, P. David Polly .
Recommended publications
  • Advanced Morphometric Techniques Applied to The
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY TESIS DOCTORAL Yasser Alemán Gómez Ingeniero en Tecnologías Nucleares y Energéticas Máster en Neurociencias Madrid, 2015 DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN PHD THESIS ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY AUTHOR Yasser Alemán Gómez Ing. en Tecnologías Nucleares y Energéticas MSc en Neurociencias ADVISOR Manuel Desco Menéndez, MScE, MD, PhD Madrid, 2015 Departamento de Ingeniería Electrónica Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid Ph.D. Thesis Advanced morphometric techniques applied to the study of human brain anatomy Tesis doctoral Técnicas avanzadas de morfometría aplicadas al estudio de la anatomía cerebral humana Author: Yasser Alemán Gómez Advisor: Manuel Desco Menéndez Committee: Andrés Santos Lleó Universidad Politécnica de Madrid, Madrid, Spain Javier Pascau Gonzalez-Garzón Universidad Carlos III de Madrid, Madrid, Spain Raymond Salvador Civil FIDMAG – Germanes Hospitalàries, Barcelona, Spain Pablo Campo Martínez-Lage Universidad Autónoma de Madrid, Madrid, Spain Juan Domingo Gispert López Universidad Pompeu Fabra, Barcelona, Spain María Jesús Ledesma Carbayo Universidad Politécnica de Madrid, Madrid, Spain Juan José Vaquero López Universidad Carlos III de Madrid, Madrid, Spain Esta Tesis ha sido desarrollada en el Laboratorio de Imagen Médica de la Unidad de Medicina y Cirugía Experimental del Instituto de Investigación Sanitaria Gregorio Marañón y en colaboración con el Servicio de Psiquiatría del Niño y del Adolescente del Departamento de Psiquiatría del Hospital General Universitario Gregorio Marañón de Madrid, España. Tribunal nombrado por el Sr.
    [Show full text]
  • A Practical Introduction to Landmark-Based Geometric Morphometrics
    A PRACTICAL INTRODUCTION TO LANDMARK-BASED GEOMETRIC MORPHOMETRICS MARK WEBSTER Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 and H. DAVID SHEETS Department of Physics, Canisius College, 2001 Main Street, Buffalo, NY 14208 ABSTRACT.—Landmark-based geometric morphometrics is a powerful approach to quantifying biological shape, shape variation, and covariation of shape with other biotic or abiotic variables or factors. The resulting graphical representations of shape differences are visually appealing and intuitive. This paper serves as an introduction to common exploratory and confirmatory techniques in landmark-based geometric morphometrics. The issues most frequently faced by (paleo)biologists conducting studies of comparative morphology are covered. Acquisition of landmark and semilandmark data is discussed. There are several methods for superimposing landmark configu- rations, differing in how and in the degree to which among-configuration differences in location, scale, and size are removed. Partial Procrustes superimposition is the most widely used superimposition method and forms the basis for many subsequent operations in geometric morphometrics. Shape variation among superimposed con- figurations can be visualized as a scatter plot of landmark coordinates, as vectors of landmark displacement, as a thin-plate spline deformation grid, or through a principal components analysis of landmark coordinates or warp scores. The amount of difference in shape between two configurations can be quantified as the partial Procrustes distance; and shape variation within a sample can be quantified as the average partial Procrustes distance from the sample mean. Statistical testing of difference in mean shape between samples using warp scores as variables can be achieved through a standard Hotelling’s T2 test, MANOVA, or canonical variates analysis (CVA).
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • Comparative Anatomy and Functional Morphology University of California at Berkeley Department of Integrative Biology (5 Units)
    Comparative Anatomy and Functional Morphology University of California at Berkeley Department of Integrative Biology (5 Units) Course Description: This course is an in-depth look at the biology of form and function. We will examine vertebrate anatomy to understand how structures develop, how they have evolved, and how they interact with one another to allow animals to live in a variety of environments. We will study the integration of the skeletal, muscular, nervous, vascular, respiratory, digestive, endocrine, and urogenital systems to explore the historical and present diversity of vertebrate animals. Format: This course will include lecture, discussion, and laboratory sessions. Lectures will focus primarily on broad concepts and ideas. Discussion sections will emphasize how to both read and analyze primary scientific literature. Laboratory sessions will allow students to physically explore the morphologies of a diversity of taxa and will include museum specimens as well as dissections of whole animals. Lecture: Monday, Tuesday, Wednesday, and Thursday, 9:30-11:00a.m. Discussion: Monday and Thursday, 11:00a.m. or 12:00p.m. Laboratory: Monday, Tuesday, Wednesday, and Thursday, 2:00-5:00p.m. All students must take lectures, discussion sections, and laboratory sections concurrently. Attendance of all sections is required. Goals: 1. A comparative approach will allow students to gain experience in identifying similarities and differences among taxa and further their understanding of how both evolutionary and environmental contexts influence the morphology and function. 2. Students will improve their ability to ask questions and answer them using scientific methodology. 3. Students will gain factual knowledge of terms and concepts regarding vertebrate anatomy and functional morphology.
    [Show full text]
  • Bacterial Size, Shape and Arrangement & Cell Structure And
    Lecture 13, 14 and 15: bacterial size, shape and arrangement & Cell structure and components of bacteria and Functional anatomy and reproduction in bacteria Bacterial size, shape and arrangement Bacteria are prokaryotic, unicellular microorganisms, which lack chlorophyll pigments. The cell structure is simpler than that of other organisms as there is no nucleus or membrane bound organelles.Due to the presence of a rigid cell wall, bacteria maintain a definite shape, though they vary as shape, size and structure. When viewed under light microscope, most bacteria appear in variations of three major shapes: the rod (bacillus), the sphere (coccus) and the spiral type (vibrio). In fact, structure of bacteria has two aspects, arrangement and shape. So far as the arrangement is concerned, it may Paired (diplo), Grape-like clusters (staphylo) or Chains (strepto). In shape they may principally be Rods (bacilli), Spheres (cocci), and Spirals (spirillum). Size of Bacterial Cell The average diameter of spherical bacteria is 0.5- 2.0 µm. For rod-shaped or filamentous bacteria, length is 1-10 µm and diameter is 0.25-1 .0 µm. E. coli , a bacillus of about average size is 1.1 to 1.5 µm wide by 2.0 to 6.0 µm long. Spirochaetes occasionally reach 500 µm in length and the cyanobacterium Accepted wisdom is that bacteria are smaller than eukaryotes. But certain cyanobacteria are quite large; Oscillatoria cells are 7 micrometers diameter. The bacterium, Epulosiscium fishelsoni , can be seen with the naked eye (600 mm long by 80 mm in diameter). One group of bacteria, called the Mycoplasmas, have individuals with size much smaller than these dimensions.
    [Show full text]
  • Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia
    brain sciences Article Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia Martina Lucignani 1, Daniela Longo 2, Elena Fontana 2, Maria Camilla Rossi-Espagnet 2,3, Giulia Lucignani 2, Sara Savelli 4, Stefano Bascetta 4, Stefania Sgrò 5, Francesco Morini 6, Paola Giliberti 6 and Antonio Napolitano 1,* 1 Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] 2 Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] (D.L.); [email protected] (E.F.); [email protected] (M.C.R.-E.); [email protected] (G.L.) 3 NESMOS Department, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy 4 Imaging Department, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy; [email protected] (S.S.); [email protected] (S.B.) 5 Department of Anesthesia and Critical Care, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] 6 Department of Medical and Surgical Neonatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; [email protected] (F.M.); [email protected] (P.G.) * Correspondence: [email protected]; Tel.: +39-333-3214614 Abstract: Congenital diaphragmatic hernia (CDH) is a severe pediatric disorder with herniation of abdominal viscera into the thoracic cavity. Since neurodevelopmental impairment constitutes a common outcome, we performed morphometric magnetic resonance imaging (MRI) analysis on Citation: Lucignani, M.; Longo, D.; CDH infants to investigate cortical parameters such as cortical thickness (CT) and local gyrification Fontana, E.; Rossi-Espagnet, M.C.; index (LGI).
    [Show full text]
  • Structure and Morphology Micro-‐Level Morphology
    Chapter 2 Majority of illustraons in this presentaon are from Biological Psychology 4th edi3on (© Sinuer Publicaons) Structure and Morphology 1. To understand behavior, as it relates to many processes in the brain, it is important to study the structure or morphology of the brain. 2. We can study the structure of brain at the micro level, looking at small units like neurons, dendrites and receptors etc. or at the macro level, looking at the regions, areas, and nuclei and/or study the brain. 2 Micro-Level Morphology 1. To study the morphology of brain at the micro level tools and techniques had to be developed. One such development was the inven3on of the op3cal microscope (Leeuwenhoek, 17th century). 2. More recent developments include electron microscope with increased magnificaon. 3 1 Micro-Level Morphology 3. Looking at he brain meant cung the brain, staining it, and make them worthy of the microscope. Many different staining methods have developed. 4 Camillo Golgi 1. Golgi developed the silver method to stain the nerve 3ssue. 2. Believed that neurons connected in a (1737-1798 AD) “syncium”, by blending. This theory was called re3cular theory of neurons. 5 Ramón y Cajal 1. Cajal also used the silver method to stain the brain, but 2. Believed that neurons were separate and communicated through gaps (1852-1934) (synapse). This came to be known as the neuron doctrine. 6 2 Cells in Brain 7 Neurons There are 100 billion neurons in the human brain. Packed with 10 3mes more glial cells. Each neuron is divided into three parts; dendrites, cell body and axon.
    [Show full text]
  • Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology
    Biology and Philosophy 18: 309–345, 2003. © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology ALAN C. LOVE Department of History and Philosophy of Science University of Pittsburgh CL 1017 Pittsburgh, PA 15260 U.S.A. E-mail: [email protected] Abstract. One foundational question in contemporary biology is how to ‘rejoin’ evolution and development. The emerging research program (evolutionary developmental biology or ‘evo- devo’) requires a meshing of disciplines, concepts, and explanations that have been developed largely in independence over the past century. In the attempt to comprehend the present separation between evolution and development much attention has been paid to the split between genetics and embryology in the early part of the 20th century with its codification in the exclusion of embryology from the Modern Synthesis. This encourages a characterization of evolutionary developmental biology as the marriage of evolutionary theory and embryology via developmental genetics. But there remains a largely untold story about the significance of morphology and comparative anatomy (also minimized in the Modern Synthesis). Functional and evolutionary morphology are critical for understanding the development of a concept central to evolutionary developmental biology, evolutionary innovation. Highlighting the discipline of morphology and the concepts of innovation and novelty provides an alternative way of conceptualizing the ‘evo’ and the ‘devo’ to be synthesized. Key words: comparative anatomy, developmental genetics, embryology, evolutionary developmental biology, innovation, morphology, novelty, synthesis, typology 1. Introduction and methodology ... problems concerned with the orderly development of the individual are unrelated to those of the evolution of organisms through time ..
    [Show full text]
  • Dynamic Allometry in Coastal Overwash Morphology
    Earth Surf. Dynam., 8, 37–50, 2020 https://doi.org/10.5194/esurf-8-37-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Dynamic allometry in coastal overwash morphology Eli D. Lazarus1, Kirstin L. Davenport1, and Ana Matias2 1Environmental Dynamics Lab, School of Geography and Environmental Science, University of Southampton, Highfield B44, Southampton, SO17 1BJ, UK 2Centre for Marine and Environmental Research, University of Algarve, Gambelas Campus, Faro, Portugal Correspondence: Eli D. Lazarus ([email protected]) Received: 25 July 2019 – Discussion started: 31 July 2019 Revised: 11 November 2019 – Accepted: 13 December 2019 – Published: 21 January 2020 Abstract. Allometry refers to a physical principle in which geometric (and/or metabolic) characteristics of an object or organism are correlated to its size. Allometric scaling relationships typically manifest as power laws. In geomorphic contexts, scaling relationships are a quantitative signature of organization, structure, or regularity in a landscape, even if the mechanistic processes responsible for creating such a pattern are unclear. Despite the ubiquity and variety of scaling relationships in physical landscapes, the emergence and development of these relationships tend to be difficult to observe – either because the spatial and/or temporal scales over which they evolve are so great or because the conditions that drive them are so dangerous (e.g. an extreme hazard event). Here, we use a physical experiment to examine dynamic allometry in overwash morphology along a model coastal barrier. We document the emergence of a canonical scaling law for length versus area in overwash deposits (washover).
    [Show full text]
  • Introduction to Bacteria: Classification, Morphology and Structures
    Introduction to Bacteria: Classification, Morphology and Structures Introduction • Prokaryotic organisms. • Vary in sizes, measure approximately 0.1 to 10.0 μm • Widely distributed. It can be found in soil, air, water, and living bodies. • Some bacteria can cause diseases for human, animals and plants. • Some bacteria are harmless (i.e. live in human bodies as normal flora) Size of Bacteria • Unit of measurement in bacteriology is the micron (micrometre, µm) • Bacteria of medical importance (0.2 – 1.5 µm) in diameter (3 – 5 µm) in length Bacterial Morphology • Rods – bacilli • Coccoid shaped • spirilla Bacterial Morphology • Cocci – spherical / oval shaped major groups • Bacilli – rod shaped • Vibrios – comma shaped • Spirilla – rigid spiral forms • Spirochetes – flexible spiral forms • Actinomycetes – branching filamentous bacteria • Mycoplasmas – lack cell wall Reproduction • Binary fission Bacterial Structure A. The envelope: 1. Cytoplasmic membrane 2. Cell wall (Peptidoglycan) 3. Extracellular polysaccharides: capsules, microcapsules and loose slime 4. Appendages 5. Antigenic variation B. Cytoplasmic components Bacterial Structure 1. Cytoplasmic membrane Bacterial Structure 2. Cell wall Characteristic Gram-negative Bacteria Gram-positive Bacteria Wall Structure BacterialThey have a thin Structure The peptidoglycan layer is lipopolysaccharide exterior thick cell wall. Effect of Dye do not retain the crystal retain the crystal violet dye, violet dye, and react only and change into purple with a counter-stain, during staining generally stain pink. identification. Effect of Antibiotics • resistant to penicillin susceptible to the enzyme • contain an endotoxin lysozyme and to penicillin called LPS Flagellum If present, the flagellum has The flagellum has two four supporting rings, supporting rings, in the namely 'L' ring, 'P' ring, 'M' peptidoglycan layer, and in ring, and 'S' ring.
    [Show full text]
  • The Biology and External Morphology of Bees
    3?00( The Biology and External Morphology of Bees With a Synopsis of the Genera of Northwestern America Agricultural Experiment Station v" Oregon State University V Corvallis Northwestern America as interpreted for laxonomic synopses. AUTHORS: W. P. Stephen is a professor of entomology at Oregon State University, Corval- lis; and G. E. Bohart and P. F. Torchio are United States Department of Agriculture entomolo- gists stationed at Utah State University, Logan. ACKNOWLEDGMENTS: The research on which this bulletin is based was supported in part by National Science Foundation Grants Nos. 3835 and 3657. Since this publication is largely a review and synthesis of published information, the authors are indebted primarily to a host of sci- entists who have recorded their observations of bees. In most cases, they are credited with specific observations and interpretations. However, information deemed to be common knowledge is pre- sented without reference as to source. For a number of items of unpublished information, the generosity of several co-workers is ac- knowledged. They include Jerome G. Rozen, Jr., Charles Osgood, Glenn Hackwell, Elbert Jay- cox, Siavosh Tirgari, and Gordon Hobbs. The authors are also grateful to Dr. Leland Chandler and Dr. Jerome G. Rozen, Jr., for reviewing the manuscript and for many helpful suggestions. Most of the drawings were prepared by Mrs. Thelwyn Koontz. The sources of many of the fig- ures are given at the end of the Literature Cited section on page 130. The cover drawing is by Virginia Taylor. The Biology and External Morphology of Bees ^ Published by the Agricultural Experiment Station and printed by the Department of Printing, Ore- gon State University, Corvallis, Oregon, 1969.
    [Show full text]
  • On the Contribution of Allometry to Morphological Variation in a Freshwater Gastropod Elimia Livescens
    2013. Proceedings of the Indiana Academy of Science 121(2):163–166 ON THE CONTRIBUTION OF ALLOMETRY TO MORPHOLOGICAL VARIATION IN A FRESHWATER GASTROPOD ELIMIA LIVESCENS Dustin A. S. Owen, Anna Settineri, Stephen J. Jacquemin and Mark Pyron: Aquatic Biology and Fisheries Center, Department of Biology, Ball State University, Muncie, IN, 47306 ABSTRACT. Morphological variation attributable to allometry in the freshwater gastropod Elimia livescens Menke, 1830 is described. Geometric morphometric analyses were used to examine shape variation and visual ontogenic deformation patterns for a population of E. livescens along the West Fork of the White River, Delaware County, Indiana. A strong allometric slope from more globose and robust shelled smaller individuals to increasingly fusiform shell shapes in larger individuals was identified. The relatively high allometric slope was interpreted as evidence of functional importance and maintenance through selection. Keywords: gastropods, morphology, allometry Morphological variation in freshwater gas- abiotic environmental variables (Dunithan tropods has been attributed to allometry, et al. 2011). However mechanisms for the direct predation, competition, and environmental cause of this morphological variation are variation (Vermeij & Covich 1978; Kemp & mostly unknown. Although morphological Bertness 1984; DeWitt 1998; Dunithan et al. variation that covaries with environmental 2011). Shape variation of most taxa can be variation appears to be adaptive, this research described with a power function that varies area is understudied (Callery et al. 2001). with body size (e.g., allometry; Huxley 1932; Identifying morphological corollaries can pro- Peters 1983). Allometric variation can result vide further information about ecological and from competition among and within age groups evolutionary patterns (Hollander et al.
    [Show full text]