How Nature Can Exploit Nonspecific Catalytic and Carbohydrate Binding
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity Fiona Cuskina,b,1, James E. Flinta,1, Tracey M. Glosterc,1,2, Carl Morlanda, Arnaud Basléa, Bernard Henrissatd, Pedro M. Coutinhod, Andrea Strazzullie, Alexandra S. Solovyovaa, Gideon J. Daviesc, and Harry J. Gilberta,b,3 aInstitute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; bThe Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602; cStructural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom; dArchitecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, 13288 Marseille Cedex 9, France; and eInstitute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved October 30, 2012 (received for review July 16, 2012) Noncatalytic carbohydrate binding modules (CBMs) are components CBMs enhance the activity of their cognate enzymes, and though of glycoside hydrolases that attack generally inaccessible substrates. the mechanism(s) by which this occurs remains uncertain, CBMs CBMs mediate a two- to fivefold elevation in the activity of endo- most likely fulfill a targeting function by increasing the effective acting enzymes, likely through increasing the concentration of the concentration of the appended enzymes, in the vicinity of the appended enzymes in the vicinity of the substrate. The function of substrate, thereby enhancing catalytic efficiency (8, 9). CBMs appended to exo-acting glycoside hydrolases is unclear Fructans, such as inulin and levan (polymers of predominantly because their typical endo-binding mode would not fulfill a target- β-2,1– or β-2,6–linked fructose units, respectively) are common ing role.
[Show full text]