First Crystal Structure of an Endo- Levanase – the BT1760 from A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gum: Characterization Using Analytical, Mathematical and Pharmaceutical Approaches
Original papers Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches Rishabha Malviya1,2,A,B,D–F, Pramod Sharma1,D, Susheel Dubey3,F 1 Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida U.P., India 2 Department of Pharmacy, Uttarkhand Technical University, Dehradun, India 3 Siddarth Institute of Pharmacy, Dehradun, Uttarkhand, India A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article Polymers in Medicine, ISSN 0370-0747 (print), ISSN 2451-2699 (online) Polim Med. 2017;47(2):65–76 Address for correspondence Abstract Rishabha Malviya E-mail: [email protected] Background. Natural polymers have been used in medical, pharmaceutical, cosmetic and food industry. They should be characterized before their possible applications in different industries. Funding sources none declared Objectives. The objective of this study was to characterize Kheri (Acacia chundra, family: Mimosaceae) gum using analytical, mathematical and pharmaceutical approaches. Conflict of interest none declared Material and methods. Crude Kheri gum (KG) was purified using distilled water as a solvent and etha- nol as a precipitating agent. KG was characterized in terms of phytochemical screening, micromeritic pro- Acknowledgements perties, microbial load, ash value, rheological behavior, solid state 1H nuclear magnetic resonance (NMR), Authors are highly thankful to Prof. D. K. Chauhan from the DD Pant Interdisciplinary Research Laboratory, Department mass spectra and Fourier-transform infrared spectroscopy (FTIR) studies for their possible applications in of Botany, University of Allahabad, India, for the authentication food, cosmetics and pharmaceutical industry. -
2010 Physical Biosciences Research Meeting
2010 Physical Biosciences Research Meeting Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division 2010 Physical Biosciences Research Meeting Program and Abstracts Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover art is taken from the public domain and can be found at: http://commons.wikimedia.org/wiki/File:Blue_crab_on_market_in_Piraeus_-_Callinectes_sapidus_Rathbun_20020819- 317.jpg This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are, unless specifically labeled otherwise, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ii Foreword This volume provides a record of the 2nd biennial meeting of the Principal Investigators (PIs) funded by the Physical Biosciences program, and is sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy (DOE). Within DOE-BES there are two programs that fund basic research in energy-relevant biological sciences, Physical Biosciences and Photosynthetic Systems. These two Biosciences programs, along with a strong program in Solar Photochemistry, comprise the current Photo- and Bio- Chemistry Team. This meeting specifically brings together under one roof all of the PIs funded by the Physical Biosciences program, along with Program Managers and staff not only from DOE-BES, but also other offices within DOE, the national labs, and even other federal funding agencies. -
Polysaccharide-Based Triboelectric Nanogenerators: a Review
Carbohydrate Polymers, vol. 251, 2021, pp. 11705-5. Polysaccharide-based triboelectric nanogenerators: A review. Torres, Fernando G. y De-la-Torre, Gabriel Enrique. Cita: Torres, Fernando G. y De-la-Torre, Gabriel Enrique (2021). Polysaccharide-based triboelectric nanogenerators: A review. Carbohydrate Polymers, 251, 11705-5. Dirección estable: https://www.aacademica.org/gabriel.e.delatorre/8 Esta obra está bajo una licencia de Creative Commons. Para ver una copia de esta licencia, visite https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es. Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite: https://www.aacademica.org. Carbohydrate Polymers 251 (2021) 117055 Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Review Polysaccharide-based triboelectric nanogenerators: A review Fernando G. Torres a,*, Gabriel E. De-la-Torre b a Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088, Lima, Peru b Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru ARTICLE INFO ABSTRACT Keywords: Triboelectric nanogenerators (TENGs) are versatile electronic devices used for environmental energy harvesting Triboelectric nanogenerators (TENGs) and self-powered electronics with a wide range of potential applications. The rapid development of TENGs has Green electronics caused great concern regarding the environmental impacts of conventional electronic devices. Under this Recyclable electronics context, researching alternatives to synthetic and toxic materials in electronics are of major significance. -
Levan - a Mini Review
Scientific Bulletin. Series F. Biotechnologies, Vol. XX, 2016 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 LEVAN - A MINI REVIEW Caterina TOMULESCU1,2, Roxana STOICA2, Claudia SEVCENCO2, Angela CĂŞĂRICĂ2, Mişu MOSCOVICI2, Adrian VAMANU1 1 University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania 2 National Institute for Chemical-Pharmaceutical Research & Development ICCF, 112 Vitan Ave, District 3, Bucharest, Romania Corresponding author email: [email protected] Abstract This review aimed to present a short summary of the biosynthesis, properties and industrial applications of levan, as a multiuse biopolymer. During the past years, a great number of bacterial polysaccharides have been discovered and nowadays, many studies about their molecular structure, biosynthesis and industrial development, or their functional properties establish correlations emphasizing their significant industrial value, especially as biomaterials. Levan and inulin are the main representative molecules, in the fructans group (as non-structural carbohydrates - fructose polymers). Levan is an extracellular polysaccharide (EPS), a biologically active polymer. It is a naturally occurring homopolymer of fructose, which can be found in plants and many microbial strains. Its main plant sources are: Agropyron cristatum, Dactylis glomerata, Poa secunda, Triticum aestivum, Cocksfoot and Pachysandra terminalis. As an EPS, levan is also produced, usually from sucrose-based substrates, by a variety of microorganisms: the most known microbial levan producers belong to the genera Zymomonas, Bacillus, Acetobacter, Aerobacter, Pseudomonas, Erwinia, Gluconobacter, Streptococcus and Corynebacterium. Many research works attribute levan a variety of potential applications in various fields, like: medical, chemical, pharmaceutical, cosmetics and food industries. -
Highly Thermostable and Alkaline Α-Amylase from a Halotolerant- Alkaliphilic Bacillus Sp. Ab68
Brazilian Journal of Microbiology (2008) 39:547-553 ISSN 1517-8382 HIGHLY THERMOSTABLE AND ALKALINE α-AMYLASE FROM A HALOTOLERANT- ALKALIPHILIC BACILLUS SP. AB68 Ashabil Aygan1*; Burhan Arikan2; Hatice Korkmaz2; Sadik Dinçer2; Ömer Çolak2 1Kahramanmaras Sutcu Imam University, Faculty of Science and Letters, Department of Biology, K. Maras, Turkey; 2Cukurova University, Faculty of Science and Letters, Department of Biology, Molecular Biology Laboratory, Adana, Turkey Submitted: August 13, 2007; Returned to authors for corrections: October 22, 2007; Approved: July 16, 2008. ABSTRACT An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25ºC and 40ºC. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20ºC and 90ºC, with an optimum at 50ºC; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80ºC with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60ºC of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively. Key words: Bacillus sp., α-amylase, Alkaliphilic, Thermostable, Enzyme. INTRODUCTION unique, buffered haloalkaline habitat appropriate for a stable development of obligately (halo)alkaliphilic microorganisms Amylases are one of the most important industrial enzymes. growing optimally at pH around 10 (39). -
Evaluation of Levan-Producing Acetic Acid Bacteria for Their Potential in Gluten-Free Baking Applications
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Technische Mikrobiologie Evaluation of levan-producing acetic acid bacteria for their potential in gluten-free baking applications Tharalinee Osen Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Karl-Heinz Engel Prüfer der Dissertation: 1. Prof. Dr. Rudi F. Vogel 2. apl. Prof. Dr. Peter Köhler Die Dissertation wurde am 12.02.2018 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 16.05.2018 angenommen. Acknowledgments Acknowledgements First of all, I would like to express my gratitude to my PhD advisor, Prof. Dr. Rudi F. Vogel, for his patient guidance, invaluable suggestions, and useful critiques of this research work. Secondly, I would like to thank my supervisor, Dr. Frank Jakob, for his support, motivation, and help throughout my time as a PhD candidate. This PhD thesis would not have been possible without the ideas and initiation from both of them. I am particularly grateful to Prof. Dr. Peter Köhler for his time as the second examiner for my PhD defense, and also for enabling measurements with the Volscan Profiler and texture analyzer used in this work. Furthermore, I would like to thank Prof. Dr. Karl-Heinz Engel for his time as the chairman of the examination committee. I also thank my students: Dorothee Janßen, Janina Röller, and Sara Lopez-Grado Vela, for their works in supporting the preliminary studies. -
(12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol. -
Studies Into the Structural Basis of the DNA Uridine Endonuclease Activity of Exonuclease III Homolog Mth212
Studies into the structural basis of the DNA uridine endonuclease activity of exonuclease III homolog Mth212 Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August Universität zu Göttingen Vorgelegt von Khaliun Tseden aus Greifswald, Deutschland Göttingen 2011 D7 Referent: Prof. Dr. Hans-Joachim Fritz Korreferent: PD Dr. Wilfried Kramer Tag der mündlichen Prüfung: 02. Mai 2011 TABLE OF CONTENTS Table of Contents 1 Introduction ………………………………………………………………….. 1 1.1. Background to the study ………………………………………………… 1 1.1.1. Necessity of mutation avoidance………………………………… 1 1.1.2. Mutations arising in DNA during replication …………………… 1 1.1.3. Exogenous sources of DNA damage …………………………….. 2 1.1.4. Endogenous sources of DNA damage …………………………… 2 1.1.4.1. Hydrolytic DNA deamination ........……………………… 4 1.1.5. Repair of uracil in DNA …………………………………………. 5 1.1.5.1. Uracil-initiated base excision repair …………………...... 5 1.1.5.2. Uracil-initiated nucleotide incision repair ……………… 7 1.2. Objective and methodology of the study ………………………………… 9 1.2.1. Objective of the study.…………………………………………… 9 1.2.2. Methodology of the study ………………………………………. 9 1.2.2.1. Necessity of screening or selection methodology in 11 directed evolution of enzymes …………………………………………… 1.2.2.2. Selection of a protein with acquired DNA uridine 11 endonuclease activity ………………………………………………….... 2. Materials and Methods ………………………………………………………. 13 2.1. Materials …………………………………………………………………. 13 2.1.1. Bacterial strains ………………………………………………….. 13 2.1.1.1. Escherichia coli …………………………………………. 13 2.1.1.2. Bacillus subtilis ………………………………………… 14 2.1.2. Bacteriophage strains …………………………………………….. 14 2.1.3. Plasmid vectors ………………………………………………… 15 2.1.4. 2’ Desoxyriboseoligonucleotides ………………………………. 17 2.1.5. Molecular ladders and markers ………………………………….. 21 2.1.6. -
How Nature Can Exploit Nonspecific Catalytic and Carbohydrate Binding
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity Fiona Cuskina,b,1, James E. Flinta,1, Tracey M. Glosterc,1,2, Carl Morlanda, Arnaud Basléa, Bernard Henrissatd, Pedro M. Coutinhod, Andrea Strazzullie, Alexandra S. Solovyovaa, Gideon J. Daviesc, and Harry J. Gilberta,b,3 aInstitute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; bThe Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602; cStructural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom; dArchitecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, 13288 Marseille Cedex 9, France; and eInstitute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved October 30, 2012 (received for review July 16, 2012) Noncatalytic carbohydrate binding modules (CBMs) are components CBMs enhance the activity of their cognate enzymes, and though of glycoside hydrolases that attack generally inaccessible substrates. the mechanism(s) by which this occurs remains uncertain, CBMs CBMs mediate a two- to fivefold elevation in the activity of endo- most likely fulfill a targeting function by increasing the effective acting enzymes, likely through increasing the concentration of the concentration of the appended enzymes, in the vicinity of the appended enzymes in the vicinity of the substrate. The function of substrate, thereby enhancing catalytic efficiency (8, 9). CBMs appended to exo-acting glycoside hydrolases is unclear Fructans, such as inulin and levan (polymers of predominantly because their typical endo-binding mode would not fulfill a target- β-2,1– or β-2,6–linked fructose units, respectively) are common ing role. -
Fermentation Parameters and Conditions Affecting Levan
Bioorganic Chemistry 93 (2019) 102787 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Fermentation parameters and conditions affecting levan production and its T potential applications in cosmetics ⁎ Marta Domżał-Kędziaa, Agnieszka Lewińskab, , Anna Jarominc, Marek Weselskib, ⁎ Robert Pluskotad, Marcin Łukaszewicza, a Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland b Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland c Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland d InventionBio Sp. z o.o., Wojska Polskiego 65 st., 85-825 Bydgoszcz, Poland ARTICLE INFO ABSTRACT Keywords: Levan is a polysaccharide composed of fructose units with β-2,6-glycoside bonds. Microorganisms synthesize Biocatalysis levan by levansucrase as a mixture of low- and high-molecular-weight fractions. Due to its properties, it has a Bacillus subtilis wide range of applications in cosmetics, pharmaceuticals, food and medicine; it appears that the molecular Levan weight of levan might impact its industrial use. To obtain one fraction of levan after biotransformation, ethanol Isolation precipitation with an increasing volume of alcohol was conducted. This precipitation process was also optimized. Purification Several types of analyses were used. Low-molecular-weight levan was evaluated for toxicity in a normal human Structural characterization Cytotoxicity dermal fibroblast cell line and hemolytic potential on human erythrocytes. Levan was found to be non-cytotoxic Hemolysis and non-hemolytic in concentrations ranging from 0.01 to 1.00 mg/ml. Moreover, levan demonstrated anti- Antioxidant activity oxidant potential expressed as an ability to inhibit of oil/water emulsion oxidation and DPPH radical scavenging. -
Size-Dependent Rheological Variability of Levan Produced by Gluconobacter Albidus TMW 2.1191
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2020 doi:10.20944/preprints202001.0066.v1 Peer-reviewed version available at Foods 2020, 9, 192; doi:10.3390/foods9020192 Article Size-Dependent Rheological Variability of Levan Produced by Gluconobacter Albidus TMW 2.1191 Christoph Simon Hundschell 1, Andre Braun 2, Daniel Wefers 3, Rudi F. Vogel 1 and Frank Jakob 1,* 1 Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany 2 Lehrstuhl für Systemverfahrenstechnik, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising; current affiliation: Anton Paar Germany GmbH, Hellmuth-Hirth-Strasse 6, 73760 Ostfildern- Scharnhausen, Germany 3 Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; current affiliation: Division of Food Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany * Correspondence: [email protected]; Tel.: +xx-xxxx-xxx-xxxx (F.L.) Abstract: Levan is a fructan-type exopolysaccharide, which is produced by many microbes from sucrose via extracellular levansucrases. The hydrocolloid properties of levan depend on its molecular weight, while it is unknown why and to which extent levan is functionally diverse in dependence of its size. The aim of our study was to get deeper insights into the size-dependent, functional variability of levan. For this purpose, levans of different sizes were produced using the water kefir isolate Gluconobacter albidus TMW 2.1191 and subsequently rheologically characterized. Three levan types could be identified, which are similarly branched, but significantly differ in their molecular size and rheological properties among each other. The smallest levan (< 107 Da) produced without adjustment of the pH exhibited Newton-like flow behavior up to a specific concentration of 25% (w/v). -
154581A0.Pdf
No. 3914, NOVEMBER 4, 1944 NATURE 581 Alleged Role of Fructofuranose in the ture of fructofuranoses and fructopyranoses. The recent demonstration that glucose-1-phosphate (Cori Synthesis of Levan ester) and fructose form a dynamic equilibrium with THE view was long widely entertained that cells sucrose and phosphoric acid in the presence of a. synthesize macromolecules of polysaccharides and specific enzyme8 corroborates this view. Addition of proteins by a reversion .of the process of hydrolysis. fructose to sucrose does not inhibit levan production It has been suggested accordingly that the synthesis from the latter, yet fructose itself, although it pre of the polyfructoside levan specifically from aldo sumably contains ready fructofuranose, is not con side< >fructofuranosides (sucrose, raffinose) involves verted into levan by levansucrase7 • Similarly, levan two distinct steps : first, hydrolysis of the substrate ; sucrase fails to form levan from reaction mixtures secondly, polymerization of fructofuranose b;r a con in which fructofuranose is sustainedly liberated in densation involving removal of water1• Bacteria statu nascendi, for example, in reaction mixtures of which form levan from sucrose do so also from methyl gamma fructoside + yeast invertase, and of raffinose•. This polymerative type of sucrose de inulin inulase. gradation is concurrent with an ordinary hydrolytic (c) Extracts of an Aerobacter, although they pro inversions·'· The same banteria ferment !evans. duce levan from sucrose and hydro'yse the latter as Investigators might be tempted by these correlations well, do not hydrolyse levan. Thus they contain to consider the enzyme system, levansucrase, to be levansucrase and invertase but no polyfructosidase but a mixture of invertase and polyfructosidase.