Mechanisms by Which Glycoside Hydrolases Recognize Plant

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms by Which Glycoside Hydrolases Recognize Plant Mechanisms by which Glycoside Hydrolases Recognize Plant, Bacterial and Yeast Polysaccharides A thesis submitted for the degree of Doctor of Philosophy Newcastle University 2008-2012 Fiona Cuskin Institute for Cell and Molecular Biosciences 1 Acknowledgements I would like to thank my supervisor Harry Gilbert, for the opportunity to study a PhD within his lab. I would also like to thank Harry, for his invaluable guidance, support and patience throughout my studies. The many people past and present I have worked with in Harry’s lab have provided invaluable advice and friendship and would like to thank Carl Morland, Dave Bolam, Elisabeth Lowe, Arthur Rogowski, Adam Jackson, Alan Cartmell, Lauren Mckee, Joanna Norman, Yanping Zhu and Wade Abbott to name a few. This work would not have been possible if it was not for the collaboration and expertise of Dr Arnaud Basle for the X-ray crystallography and Dr Alexandra Solovyova for the Analytical Ultracentrifugation. Finally, I would like to thank my family and friends for the love and support over the last 4 years. 2 Abstract The deconstruction of complex carbohydrates by glycoside hydrolases requires extensive enzyme consortia in which specificity is often conferred by accessory modules and domains that are distinct from the active site. The diverse mechanisms of substrate recognition were explored in this thesis using selected yeast, bacterial and plant polysaccharides as example substrates. Carbohydrate binding modules (CBM) are non-catalytic modules that enhance the catalytic activity of their glycoside hydrolase counterparts through binding to polysaccharide. Normally CBMs are found attached to glycoside hydrolases that target insoluble recalcitrant substrates resulting in a moderate, 2-5 fold, potentiation in enzyme activity. A CBM, defined herein as CBMX40, is found at the C-terminal of a glycoside hydrolase family (GH) 32 enzyme, SacC, which displays exo-levanase activity. CBMX40 binds the non-reducing end of the levan chain targeting the disaccharide fructose- -fructose unit. Removal of CBMX40 results in a >100-fold decrease in catalytic activity against levan, compared to the full length native enzyme. The truncated SacC catalytic domain acts as a non-specific exo-β-fructosidase displaying similar activity on β2,1- (inulin) and β2,6-linked fructose polymers, both polysaccharides and oligosaccharides. When CBMX40 was fused to a non-related exo- β-fructosidase, BT 3082, it conferred exo-levanase specificity on the enzyme. Thus CBMX40 is not only able to enhance catalytic activity but is also able to confer catalytic specificity. This led to the hypothesis that the CBM and the active site of the enzyme bind to different terminal residues of branched fructans such as levan. This results in enhanced affinity through avidity effects leading to the potentiation of catalytic activity. The gut bacterium Bacteroides thetaiotaomicron contributes to the maintenance of a healthy human gut. B. thetaiotaomicron is able to acquire and utilise complex carbohydrates that are not attacked by the intestinal enzymes of the host. B. thetaiotaomicron dedicates a large proportion of its genome to glycan degradation with a large expansion of α-mannan degrading enzymes. The B. thetaiotaomicron genome encodes 23 GH92 α- mannanosidases and 10 GH76 α-mannanases. While GH92 has recently been characterised the activities displayed by GH76 relies on the characterization of a single enzyme in this family. B. thetaiotaomicron organises the genes required to sense, degrade, transport and utilise specific complex glycans into genetic clusters defined as Polysaccharide Utilisation Loci (PULs). Transcriptomics revealed that two PULs are up regulated in response to yeast mannan, PUL 36 and PUL 68. These PULs contain both GH76 enzymes along with GH92 enzymes and other CAZy annotated enzymes. Biochemical analysis of the GH76 enzymes found in the two PULs show they are α1, 6 mannanases capable of hydrolysing the α1, 6 mannan backbone of yeast mannan, with the putative periplasmic enzymes generating small oligosaccharides, while the surface mannanases releasing larger products. The three GH92 enzymes encoded by the two PULs have been shown to remove α1, 2 and α1, 3 linked mannose branches from yeast mannan polysaccharide. In addition PUL 68 also encodes a phosphatase that removes the phosphate from mannose-6-phosphate and glucose-6-phosphate but not from intact mannan. Therefore, this study describes the ability of B. thetaiotaomicron to target and degrade yeast α-mannans. The GH5 enzyme CtXyl5A from Clostridium thermocellum is an arabinoxylan specific xylanase that contains a GH5 catalytic module appended to several CBMs. The apo structure of the GH5 catalytic module appended to a family 6 CBM reveals a large pocket abutted to the -1 subsite of the active site. This pocket was thought to bind the arabinose decoration appended to the O3 of the xylan backbone. Here mutational and structural studies showed that the fulfilment of arabinose is this pocket is the key specificity determinant for the novel arabinoxylanase activity. Significantly the bound arabinose displayed a pyranose conformation, rather than a furanose structure which is the typical conformation adopted by arabinose side chains in arabinoxylans. This structural information suggests that CtXyl5A may be able to exploit side chains other than arabinofuranose residues as substrate specificity determinants. 3 Contents Acknowledgements .................................................................................................... 2 Abstract ...................................................................................................................... 3 Contents ..................................................................................................................... 4 List of Figures ............................................................................................................. 8 List of Tables ............................................................................................................ 10 Chapter 1: Introduction ............................................................................................. 11 1.1 Complex polysaccharides structures and functions ................................... 12 1.1.1 Fructan polysaccharides ....................................................................... 12 1.1.2 Mannan from Saccharomyces cerevisiae ............................................. 17 1.1.3 Major plant structural polysaccharides ................................................. 20 1.2 Glycoside hydrolase ....................................................................................... 23 1.3 Carbohydrate Binding Modules....................................................................... 27 1.4 Glycoside Hydrolases acting on Fructan Polysaccharides ............................. 30 1.4.1 Family GH68 enzymes ......................................................................... 30 1.4.2 GH32 enzymes ..................................................................................... 31 1.5 Glycoside Hydrolase enzymes acting on Mannan polysaccharides................ 33 1.5.1 α-Mannosidases ................................................................................... 33 1.5.1.1 Glycoside hydrolase family 38 ....................................................... 33 1.5.1.2 Glycoside Hydrolase family 47 ....................................................... 36 1.5.1.3 Glycoside Hydrolase 92 ................................................................. 39 1.5.2 α-Mannanases (Glycoside hydrolase family 76) ................................... 40 1.6 Xylanases ....................................................................................................... 42 1.7 Bacteroides thetaiotaomicron ......................................................................... 45 1.7.1 The glycophilic nature of B. thetaiotaomicron ....................................... 45 1.7.2 Polysaccharide utilisation by B. thetaiotaomicron ................................. 46 1.7.2.1 Carbohydrate sensing and gene regulation ................................... 50 1.8 Objectives ....................................................................................................... 53 Chapter 2: Materials and Methods ........................................................................... 54 2.1 Molecular Biology ........................................................................................... 54 2.1.1 Bacterial Strains and Plasmids ............................................................. 54 2.1.2 Media and Growth Conditions .............................................................. 54 4 2.1.3 Selective Media .................................................................................... 54 2.1.4 Storage of DNA and Bacteria ............................................................... 55 2.1.5 Sterilisation ........................................................................................... 57 2.1.6 Chemicals, enzymes and Media ........................................................... 57 2.1.7 Centrifugation ....................................................................................... 57 2.1.8 Chemically competent E. Coli ............................................................... 57 2.1.9 Transformation of E. coli ....................................................................... 58 2.1.10 Replication of DNA and rapid small scale plasmid preparation
Recommended publications
  • Gum: Characterization Using Analytical, Mathematical and Pharmaceutical Approaches
    Original papers Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches Rishabha Malviya1,2,A,B,D–F, Pramod Sharma1,D, Susheel Dubey3,F 1 Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida U.P., India 2 Department of Pharmacy, Uttarkhand Technical University, Dehradun, India 3 Siddarth Institute of Pharmacy, Dehradun, Uttarkhand, India A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article Polymers in Medicine, ISSN 0370-0747 (print), ISSN 2451-2699 (online) Polim Med. 2017;47(2):65–76 Address for correspondence Abstract Rishabha Malviya E-mail: [email protected] Background. Natural polymers have been used in medical, pharmaceutical, cosmetic and food industry. They should be characterized before their possible applications in different industries. Funding sources none declared Objectives. The objective of this study was to characterize Kheri (Acacia chundra, family: Mimosaceae) gum using analytical, mathematical and pharmaceutical approaches. Conflict of interest none declared Material and methods. Crude Kheri gum (KG) was purified using distilled water as a solvent and etha- nol as a precipitating agent. KG was characterized in terms of phytochemical screening, micromeritic pro- Acknowledgements perties, microbial load, ash value, rheological behavior, solid state 1H nuclear magnetic resonance (NMR), Authors are highly thankful to Prof. D. K. Chauhan from the DD Pant Interdisciplinary Research Laboratory, Department mass spectra and Fourier-transform infrared spectroscopy (FTIR) studies for their possible applications in of Botany, University of Allahabad, India, for the authentication food, cosmetics and pharmaceutical industry.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Synthesis and Structural Characterization of Glucooligosaccharides and Dextran from Weissella Confusa Dextransucrases
    YEB Recent Publications in this Series Dextran from and and Structural Characterization of Glucooligosaccharides QIAO SHI Synthesis 4/2016 Hany S.M. EL Sayed Bashandy Flavonoid Metabolomics in Gerbera hybrida and Elucidation of Complexity in the Flavonoid Biosynthetic Pathway 5/2016 Erja Koivunen Home-Grown Grain Legumes in Poultry Diets 6/2016 Paul Mathijssen DISSERTATIONES SCHOLA DOCTORALIS SCIENTIAE CIRCUMIECTALIS, Holocene Carbon Dynamics and Atmospheric Radiative Forcing of Different Types of Peatlands ALIMENTARIAE, BIOLOGICAE. UNIVERSITATIS HELSINKIENSIS 21/2016 in Finland 7/2016 Seyed Abdollah Mousavi Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza spp. 8/2016 Sedeer El-Showk Auxin and Cytokinin Interactions Regulate Primary Vascular Patterning During Root QIAO SHI Development in Arabidopsis thaliana 9/2016 Satu Olkkola Antimicrobial Resistance and Its Mechanisms among Campylobacter coli and Campylobacter Synthesis and Structural Characterization of upsaliensis with a Special Focus on Streptomycin 10/2016 Windi Indra Muziasari Glucooligosaccharides and Dextran from Impact of Fish Farming on Antibiotic Resistome and Mobile Elements in Baltic Sea Sediment Weissella confusa Dextransucrases 11/2016 Kari Kylä-Nikkilä Genetic Engineering of Lactic Acid Bacteria to Produce Optically Pure Lactic Acid and to Develop a Novel Cell Immobilization Method Suitable for Industrial Fermentations 12/2016 Jane Etegeneng Besong epse Ndika Molecular Insights into a Putative Potyvirus RNA Encapsidation
    [Show full text]
  • Transferable Step-Potentials For
    © 2013 ANTHONY COFFMAN ALL RIGHTS RESERVED PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Anthony Coffman December, 2013 PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA Anthony Coffman Thesis Approved: Accepted: ___________________________________ ___________________________________ Advisor Department Chair Dr. Lu-Kwang Ju Dr. Lu-Kwang Ju ___________________________________ ___________________________________ Committee Member Dean of The College Dr. Gang Cheng Dr. George K. Haritos ___________________________________ ___________________________________ Committee Member Dean of the Graduate School Dr. Chelsea N. Monty Dr. George R. Newkome ___________________________________ Date ii ABSTRACT Trichoderma reesei RUT-C30 was cultivated in shaker flasks and pH-controlled, agitated batch fermentations to study the effects of soy-based media on the production of cellulase, xylanase, and pectinase (polygalacturonase) for the purposes of soybean polysaccharide hydrolysis. Growth on defatted soybean flour as sole nitrogen source was compared to the standard combination of ammonium sulfate, proteose peptone, and urea. Carbon source effect was also examined for a variety of substrates, including lactose, microcrystalline cellulose (Avicel), citrus pectin, soy molasses, soy flour hydrolysate, and soybean hulls (both pretreated and natural). Flask study results indicated exceptional enzyme induction by Avicel and soybean hulls, while citrus pectin, soy molasses, and soy flour hydrolysate did not promote enzyme production. Batch fermentation experiments reflected the flask system results, showing the highest cellulase and xylanase activities for systems grown with Avicel and soybean hulls at near-neutral pH levels, and the highest polygalacturonase activity resulting from growth on lactose and soybean hulls at lower pH levels, 4.0 to 4.5.
    [Show full text]
  • 2010 Physical Biosciences Research Meeting
    2010 Physical Biosciences Research Meeting Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division 2010 Physical Biosciences Research Meeting Program and Abstracts Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover art is taken from the public domain and can be found at: http://commons.wikimedia.org/wiki/File:Blue_crab_on_market_in_Piraeus_-_Callinectes_sapidus_Rathbun_20020819- 317.jpg This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are, unless specifically labeled otherwise, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ii Foreword This volume provides a record of the 2nd biennial meeting of the Principal Investigators (PIs) funded by the Physical Biosciences program, and is sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy (DOE). Within DOE-BES there are two programs that fund basic research in energy-relevant biological sciences, Physical Biosciences and Photosynthetic Systems. These two Biosciences programs, along with a strong program in Solar Photochemistry, comprise the current Photo- and Bio- Chemistry Team. This meeting specifically brings together under one roof all of the PIs funded by the Physical Biosciences program, along with Program Managers and staff not only from DOE-BES, but also other offices within DOE, the national labs, and even other federal funding agencies.
    [Show full text]
  • Polysaccharide-Based Triboelectric Nanogenerators: a Review
    Carbohydrate Polymers, vol. 251, 2021, pp. 11705-5. Polysaccharide-based triboelectric nanogenerators: A review. Torres, Fernando G. y De-la-Torre, Gabriel Enrique. Cita: Torres, Fernando G. y De-la-Torre, Gabriel Enrique (2021). Polysaccharide-based triboelectric nanogenerators: A review. Carbohydrate Polymers, 251, 11705-5. Dirección estable: https://www.aacademica.org/gabriel.e.delatorre/8 Esta obra está bajo una licencia de Creative Commons. Para ver una copia de esta licencia, visite https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es. Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite: https://www.aacademica.org. Carbohydrate Polymers 251 (2021) 117055 Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Review Polysaccharide-based triboelectric nanogenerators: A review Fernando G. Torres a,*, Gabriel E. De-la-Torre b a Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088, Lima, Peru b Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru ARTICLE INFO ABSTRACT Keywords: Triboelectric nanogenerators (TENGs) are versatile electronic devices used for environmental energy harvesting Triboelectric nanogenerators (TENGs) and self-powered electronics with a wide range of potential applications. The rapid development of TENGs has Green electronics caused great concern regarding the environmental impacts of conventional electronic devices. Under this Recyclable electronics context, researching alternatives to synthetic and toxic materials in electronics are of major significance.
    [Show full text]
  • INVERTASE from SACCHAROMYCES CEREVISIAE
    INVERTASE from SACCHAROMYCES CEREVISIAE New specifications prepared at the 57th JECFA (2001) and published in FNP 52 Add 9 (2001); previously prepared at the 15th JECFA (1971) as part of the specifications for “Carbohydrase from Saccharomyces species”, published in FNP 52. The use of this enzyme was considered to h be acceptable by the 57t JECFA (2001) if limited by Good Manufacturing Practice. SYNONYMS INS No. 1103 SOURCES Produced by the controlled submerged aerobic fermentation of a non- pathogenic and non-toxigenic strain of Saccharomyces cerevisiae and extracted from the yeast cells after washing and autolysis. Active principles β-Fructofuranosidase (synonym: invertase, carbohydrase, saccharase) Systematic names and β-Fructofuranosidase (EC 3.2.1.26; C.A.S. No. 9001-57-4) numbers Reactions catalysed Hydrolyses sucrose to yield glucose and fructose DESCRIPTION Typically white to tan amorphous powders or liquids that may be dispersed in food grade diluents and may contain stabilisers; soluble in water and practically insoluble in ethanol and ether. FUNCTIONAL USES Enzyme preparation Used in confectionery and pastry applications GENERAL Must conform to the General Specifications and Considerations for SPECIFICATIONS Enzyme Preparations Used in Food Processing (see Volume Introduction) CHARACTERISTICS IDENTIFICATION The sample shows invertase activity See description under TESTS TESTS Invertase activity Principle Invertase hydrolyses the non-reducing β-d-fructofuranoside residues of sucrose to yield invert sugar. The invert sugar released is then reacted with 3.5 dinitrosalicylic acid (DNS). The colour change produced is proportional to the amount of invert sugar released, which in turn is proportional to the invertase activity present in the sample.
    [Show full text]
  • Invertase from Baker's Yeast (S
    Invertase from baker's yeast (S. cerevisiae) Catalog Number I4504 Storage Temperature –20 °C CAS RN 9001-57-4 Reported KM values are 25 mM for sucrose and EC 3.2.1.26 150 mM for raffinose. At high substrate concentrations Synonyms: Saccharase, b-Fructofuranosidase, (1 M), invertase exhibits transferase activity by b-D-Fructofuranoside fructohydrolase transferring the b-D-fructofuranosyl residue to primary alcohols including ethanol, methanol, and n-propanol. Product Description Invertase does not require any activators and is Molecular mass:1 270 kDa inhibited by iodine, Zn2+, and Hg2+.1,3 Extinction coefficient:1 E1% = 23.0 (280 nm) pI:2 3.4–4.4 Precautions and Disclaimer This product is for R&D use only, not for drug, Invertase from baker's yeast is a glycoprotein household, or other uses. Please consult the Material containing 50% mannan and 2-3% glucosamine. During Safety Data Sheet for information regarding hazards purification, a small percentage of the enzyme may and safe handling practices. have part of the carbohydrate moiety removed leaving a heterogeneous enzyme with a lower or even negligible Preparation Instructions mannan content. This difference in carbohydrate This enzyme is soluble in water (10 mg/ml), yielding a content has led to the conclusion that two forms of the clear solution. enzyme exist. An external invertase (predominant form), carbohydrate containing, located outside of the References cell membrane and an internal invertase, which is 1. Lampen, J.O., The Enzymes, Boyer, P.D., ed., located entirely within the cytoplasm and devoid of any Academic Press (New York, NY:1971), carbohydrate.1,3 pp.
    [Show full text]
  • Levan - a Mini Review
    Scientific Bulletin. Series F. Biotechnologies, Vol. XX, 2016 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 LEVAN - A MINI REVIEW Caterina TOMULESCU1,2, Roxana STOICA2, Claudia SEVCENCO2, Angela CĂŞĂRICĂ2, Mişu MOSCOVICI2, Adrian VAMANU1 1 University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania 2 National Institute for Chemical-Pharmaceutical Research & Development ICCF, 112 Vitan Ave, District 3, Bucharest, Romania Corresponding author email: [email protected] Abstract This review aimed to present a short summary of the biosynthesis, properties and industrial applications of levan, as a multiuse biopolymer. During the past years, a great number of bacterial polysaccharides have been discovered and nowadays, many studies about their molecular structure, biosynthesis and industrial development, or their functional properties establish correlations emphasizing their significant industrial value, especially as biomaterials. Levan and inulin are the main representative molecules, in the fructans group (as non-structural carbohydrates - fructose polymers). Levan is an extracellular polysaccharide (EPS), a biologically active polymer. It is a naturally occurring homopolymer of fructose, which can be found in plants and many microbial strains. Its main plant sources are: Agropyron cristatum, Dactylis glomerata, Poa secunda, Triticum aestivum, Cocksfoot and Pachysandra terminalis. As an EPS, levan is also produced, usually from sucrose-based substrates, by a variety of microorganisms: the most known microbial levan producers belong to the genera Zymomonas, Bacillus, Acetobacter, Aerobacter, Pseudomonas, Erwinia, Gluconobacter, Streptococcus and Corynebacterium. Many research works attribute levan a variety of potential applications in various fields, like: medical, chemical, pharmaceutical, cosmetics and food industries.
    [Show full text]
  • Highly Thermostable and Alkaline Α-Amylase from a Halotolerant- Alkaliphilic Bacillus Sp. Ab68
    Brazilian Journal of Microbiology (2008) 39:547-553 ISSN 1517-8382 HIGHLY THERMOSTABLE AND ALKALINE α-AMYLASE FROM A HALOTOLERANT- ALKALIPHILIC BACILLUS SP. AB68 Ashabil Aygan1*; Burhan Arikan2; Hatice Korkmaz2; Sadik Dinçer2; Ömer Çolak2 1Kahramanmaras Sutcu Imam University, Faculty of Science and Letters, Department of Biology, K. Maras, Turkey; 2Cukurova University, Faculty of Science and Letters, Department of Biology, Molecular Biology Laboratory, Adana, Turkey Submitted: August 13, 2007; Returned to authors for corrections: October 22, 2007; Approved: July 16, 2008. ABSTRACT An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25ºC and 40ºC. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20ºC and 90ºC, with an optimum at 50ºC; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80ºC with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60ºC of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively. Key words: Bacillus sp., α-amylase, Alkaliphilic, Thermostable, Enzyme. INTRODUCTION unique, buffered haloalkaline habitat appropriate for a stable development of obligately (halo)alkaliphilic microorganisms Amylases are one of the most important industrial enzymes. growing optimally at pH around 10 (39).
    [Show full text]
  • Production of Carbohydrases for Developing Soy Meal As
    PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Qian Li May, 2017 PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED Qian Li Dissertation Approved: Accepted: Advisor Department Chair Dr. Lu-Kwang Ju Dr. Michael H. Cheung Committee Member Dean of the College Dr. Jie Zheng Dr. Donald P. Visco Jr. Committee Member Dean of the Graduate School Dr. Lingyun Liu Dr. Chand Midha Committee Member Date Dr. Ge Zhang Committee Member Dr. Pei-Yang Liu ii ABSTRACT Global demand for seafood is growing rapidly and more than 40% of the demand is met by aquaculture. Conventional aquaculture diet used fishmeal as the protein source. The limited production of fishmeal cannot meet the increase of aquaculture production. Therefore, it is desirable to partially or totally replace fishmeal with less-expensive protein sources, such as poultry by-product meal, feather meal blood meal, or meat and bone meal. However, these feeds are deficient in one or more of the essential amino acids, especially lysine, isoleucine and methionine. And, animal protein sources are increasingly less acceptable due to health concerns. One option is to utilize a sustainable, economic and safe plant protein sources, such as soybean. The soybean industry has been very prominent in many countries in the last 20 years. The worldwide soybean production has increased 106% since 1996 to 2010[1]. Soybean protein is becoming the best choice of sustainable, economic and safe protein sources.
    [Show full text]
  • Evaluation of Levan-Producing Acetic Acid Bacteria for Their Potential in Gluten-Free Baking Applications
    TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Technische Mikrobiologie Evaluation of levan-producing acetic acid bacteria for their potential in gluten-free baking applications Tharalinee Osen Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Karl-Heinz Engel Prüfer der Dissertation: 1. Prof. Dr. Rudi F. Vogel 2. apl. Prof. Dr. Peter Köhler Die Dissertation wurde am 12.02.2018 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 16.05.2018 angenommen. Acknowledgments Acknowledgements First of all, I would like to express my gratitude to my PhD advisor, Prof. Dr. Rudi F. Vogel, for his patient guidance, invaluable suggestions, and useful critiques of this research work. Secondly, I would like to thank my supervisor, Dr. Frank Jakob, for his support, motivation, and help throughout my time as a PhD candidate. This PhD thesis would not have been possible without the ideas and initiation from both of them. I am particularly grateful to Prof. Dr. Peter Köhler for his time as the second examiner for my PhD defense, and also for enabling measurements with the Volscan Profiler and texture analyzer used in this work. Furthermore, I would like to thank Prof. Dr. Karl-Heinz Engel for his time as the chairman of the examination committee. I also thank my students: Dorothee Janßen, Janina Röller, and Sara Lopez-Grado Vela, for their works in supporting the preliminary studies.
    [Show full text]