Tree Management Plan DRAFT Otter Mound Preserve, Marco Island, FL
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leafing Through History
Leafing Through History Leafing Through History Several divisions of the Missouri Botanical Garden shared their expertise and collections for this exhibition: the William L. Brown Center, the Herbarium, the EarthWays Center, Horticulture and the William T. Kemper Center for Home Gardening, Education and Tower Grove House, and the Peter H. Raven Library. Grateful thanks to Nancy and Kenneth Kranzberg for their support of the exhibition and this publication. Special acknowledgments to lenders and collaborators James Lucas, Michael Powell, Megan Singleton, Mimi Phelan of Midland Paper, Packaging + Supplies, Dr. Shirley Graham, Greg Johnson of Johnson Paper, and the Campbell House Museum for their contributions to the exhibition. Many thanks to the artists who have shared their work with the exhibition. Especial thanks to Virginia Harold for the photography and Studiopowell for the design of this publication. This publication was printed by Advertisers Printing, one of only 50 U.S. printing companies to have earned SGP (Sustainability Green Partner) Certification, the industry standard for sustainability performance. Copyright © 2019 Missouri Botanical Garden 2 James Lucas Michael Powell Megan Singleton with Beth Johnson Shuki Kato Robert Lang Cekouat Léon Catherine Liu Isabella Myers Shoko Nakamura Nguyen Quyet Tien Jon Tucker Rob Snyder Curated by Nezka Pfeifer Museum Curator Stephen and Peter Sachs Museum Missouri Botanical Garden Inside Cover: Acapulco Gold rolling papers Hemp paper 1972 Collection of the William L. Brown Center [WLBC00199] Previous Page: Bactrian Camel James Lucas 2017 Courtesy of the artist Evans Gallery Installation view 4 Plants comprise 90% of what we use or make on a daily basis, and yet, we overlook them or take them for granted regularly. -
Phenology of Ficus Variegata in a Seasonal Wet Tropical Forest At
Joumalof Biogeography (I1996) 23, 467-475 Phenologyof Ficusvariegata in a seasonalwet tropicalforest at Cape Tribulation,Australia HUGH SPENCER', GEORGE WEIBLENI 2* AND BRIGITTA FLICK' 'Cape TribulationResearch Station, Private Mail Bag5, Cape Tribulationvia Mossman,Queensland 4873, Australiaand 2 The Harvard UniversityHerbaria, 22 Divinity Avenue,Cambridge, Massachusetts 02138, USA Abstract. We studiedthe phenologyof 198 maturetrees dioecious species, female and male trees initiatedtheir of the dioecious figFicus variegataBlume (Moraceae) in a maximalfig crops at differenttimes and floweringwas to seasonally wet tropical rain forestat Cape Tribulation, some extentsynchronized within sexes. Fig productionin Australia, from March 1988 to February 1993. Leaf the female (seed-producing)trees was typicallyconfined productionwas highlyseasonal and correlatedwith rainfall. to the wet season. Male (wasp-producing)trees were less Treeswere annually deciduous, with a pronouncedleaf drop synchronizedthan femaletrees but reacheda peak level of and a pulse of new growthduring the August-September figproduction in the monthsprior to the onset of female drought. At the population level, figs were produced figproduction. Male treeswere also morelikely to produce continuallythroughout the study but there were pronounced figscontinually. Asynchrony among male figcrops during annual cyclesin figabundance. Figs were least abundant the dry season could maintainthe pollinatorpopulation duringthe early dry period (June-September)and most under adverseconditions -
Low-Maintenance Landscape Plants for South Florida1
ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †. -
SPECIAL SECTION Phenology of Ficus Racemosa in Xishuangbanna
SPECIAL SECTION BIOTROPICA 38(3): 334–341 2006 10.1111/j.1744-7429.2006.00150.x Phenology of Ficus racemosa in Xishuangbanna, Southwest China1 Guangming Zhang, Qishi Song2, and Darong Yang Kunming Section, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan 650223, Peoples’ Republic of China ABSTRACT Leaf and fig phenology (including leafing, flowering, and fruiting) and syconium growth of Ficus racemosa were studied in Xishuangbanna, China. Leaffall and flushing of F. racemosa occurred twice yearly: in mid-dry season (December to March) and mid-rainy season (July to September). The adult leaf stage of the first leaf production was remarkably longer than that of the second. F. racemosa bears syconia throughout the year, producing 4.76 crops annually. Asynchronous fig production was observed at a population level. Fig production was independent of leafing. Fig production peaks were not evident, but fluctuation was clear. Diameter growth rates of syconium were normally higher in early developmental stages than in later stages, and reached a peak coinciding with the female flower phase. The mean ± SD of syconium diameter of the female flower phase was 2.19 ± 0.36 cm, and reached 3.67 ± 0.73 cm of the male flower phase. Syconium diameter and receptacle cavity quickly enlarged at the female and male flower phases. Monthly diameter increment of the syconium was primarily affected by average monthly temperature, rather than rainfall or relative humidity. Key words: fig trees; leaffall; southern Yunnan; syconium. SEASONAL RHYTHM IS A BASIC CHARACTERISTIC OF LIFE (Zhu & Wan interfloral, male flower, and postfloral phases (Galil & Eisikowitch 1975). -
May 2010, Vol
WOODWORKERS NEWSMay 2010, Vol. 19, Number 5 May Meeting April AWA Meeting Thursday, May 13, 2010, 7:00 pm Handplanes, Then and Now By Celia Carpenter This month’s meeting was attended by many new By Pete Chast faces. I think that we have picked up several new peo- ple with the success of Totally Turning and the NWA Showcase this past month. Unfortunately our demonstrator fell through at the last minute so we held an impromptu brainstorm on T.T. Most felt that it was a great success with only minor problems. A list of concerns, observations and all was given tonight at a summary meeting in Stillwater. If anyone has comments they will be wel- comed by the T.T. board. Every year we seem to have too much to do and not enough people but as the days grow closer we seem to be able to pull it together and have an incredible two days of demonstrations, vendors and superior woodworking on display. It is because of the fine leadership and the work of the members that we are able to show the public our obsession with woodworking. The month of May’s demonstration will be by Jon Tobiessen on decorative edges. We are looking forward to his slide pres- entation and sharing of his knowledge. I would ask that if you are working on any- thing to bring it The Mid-Hudson Chapter will host the May meeting. It in to share at should be an interesting evening. the instant Ed VanWoerner We will bring a large number of old handplanes, most gallery. -
Production Potential and Ecosystem Quality of Secondary Forests Recovered from Agriculture - Tools for Landuse Decisions
Production potential and ecosystem quality of secondary forests recovered from agriculture - tools for landuse decisions Dissertation to obtain the Ph. D. degree in the Faculty of Agricultural Sciences, Georg-August-University Göttingen, Germany By: Carlos Alberto Ruiz-Garvia Born in La Paz, Bolivia Goettingen, July 2008 D7 Referee: Professor. Dr. Holm Tiessen Co-referees: PD Dr. Martin Worbes Professor Dr. Juan Jimenez Osornio Date of Examination: 31st of January 2008 II TABLE OF CONTENTS TABLE OF CONTENTS III LIST OF TABLES VII LIST OF FIGURES VIII ACRONYMS AND ABBREVIATIONS XII CHAPTER 1: INTRODUCTION 1 1.1 GENERAL DESCRIPTION OF FOREST AND SOILS IN NORTHEN YUCATAN 5 Climate 5 Soils 5 Land use 7 Forest of the Peninsula of Yucatan 10 Spiny deciduous low tropical forest 11 Low deciduous tropical forest 12 Low perennial tropical forest 12 Semi-deciduous tropical forest 13 Semi-perennial tropical forest 13 1.2 REFERENCES 15 CHAPTER 2: ESTIMATION OF BIOMASS, CARBON AND 16 NUTRIENT STATUS OF SECONDARY FOREST ABSTRACT 16 2.1 INTRODUCTION 17 III Research questions: 18 Hypothesis 19 2.2 MATERIAL AND METHODS 19 Study areas 19 Site selection and plot sampling location 21 Soil fertility and laboratory analyses 25 Statistical analyses 28 Forest measurements 29 Nutrient pools in leaf and litter 31 2.3 RESULTS AND DISCUSSION 33 Dynamics of aboveground biomass during secondary succession 35 Differences between black and red soils at different forest ages 46 Concentrations of elements in leaf and litter 53 Variability and consequence of land use history -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Plant Materials Fact Sheet Planting Native Species for Flower Rich
Plant Materials Fact Sheet No. 4 F L O Developing Planting Mixtures for R I D Pollinator Habitats A January 2012 each season of the year (Spring, Summer, Fall, and Winter). A list of NRCS recommended forbs, legumes, grasses, vines, shrubs, and trees that are adapted to Florida, known to be beneficial to pollinators, their flowering periods, and are commercially available is attached. Mixtures of herbaceous material should be planted at the rate of 40 and 60 live seed per square foot with no more than 25% of the seed mix being made up of a native warm season grass seed. Consult the Plant Materials Fact Sheet – Planting Native Species for An agricultural landscape that includes Pollinator Rich Habitat permanent areas of cover adjacent to (http://efotg.sc.egov.usda.gov/references/pub cultivated field, orchards, etc., which are lic/FL/FLPMFS3.pdf ), for information regarding planted to a diverse mixtures of flowering site preparation, planting methods, and stand plants, create the type of flower-rich foraging management for herbaceous planting. habitat necessary for pollinators and other beneficial insects. Field or orchard margins, If shrubs and trees are used in the pollinator road edges, pivot corners, and areas are habitat planting for field borders, a minimum unsuitable for production, such as steep slopes of 4 plants of each species should be planted in or habitat adjacent to wetlands are all areas each planting block with a total of no more that can be planted to such habitat. Even than 24 shrubs or trees total per ½ acre small strips or patches can provide significant planting block. -
Download Download
Legume-feeding Lepidoptera of the Florida Keys: potential competitors of an endangered lycaenid butterfly Sarah R. Steele Cabrera1,2,*, James E. Hayden3, Jaret C. Daniels1,2, Jake M. Farnum4, Charles V. Covell Jr.1, and Matthew J. Standridge1 Abstract Two Fabaceae in the Florida Keys, Pithecellobium keyense Coker and Guilandina bonduc Griseb., have been of interest because they are the larval host plants for the endangered Miami blue butterfly (Cyclargus thomasi bethunebakeri [Comstock & Huntington]; Lepidoptera: Lycaenidae). As a part of ongoing research and conservation for this butterfly, wild host plant material has been periodically collected in order to supplement a captive colony ofC. t. bethunebakeri located in Gainesville, Florida, USA. In examining this plant material, 26 lepidopterans were detected, includ- ing several host records, a new continental record, and 2 likely undescribed species, 1 Aristotelia (Gelechiidae) and 1 Crocidosema (Tortricidae). Our results expand the geographic, life-history, and taxonomic understanding of lepidopteran herbivores that use P. keyense and G. bonduc in South Florida. Key Words: Pithecellobium keyense; Guilandina bonduc; Fabaceae; herbivory Resumen En los Cayos de Florida, habitan dos especies de plantas hospederas críticas para el ciclo de vida de la mariposa Miami blue (Cyclargus thomasi bethunebakeri [Comstock y Huntington]; Lepidoptera: Lycaenidae), la cual está en peligro de extinción. Ambas plantas son de la familia Fabaceae: Pithecellobium keyense Coker y Guilandina bonduc Griseb. Como parte de una investigación de la conservación de esta mariposa, periódicamente se recolectaron muestras de estas especies de plantas para suplementar una población cautiva deC. t. bethunebakeri en Gainesville, Florida, EE. UU. Tras examinar el material vegetal colectado, encontramos veintiséis especies de Lepidópteros. -
Efecto De La Sombra Sobre La Emergencia De Plántulas De
http://doi.org/10.15174/au.2019.1 832 Efecto de la sombra sobre la emergencia de plántulas de especies maderables nativas de la Península de Yucatán Effect of shade on the emergence of seedlings of native timber species from the Yucatan Peninsula Jaime Esteban Haas-Tzuc1, *Benito Dzib-Castillo1, Wilbert Santiago Poot-Pool1, Ricardo Chiquini-Medina1 1Instituto Tecnológico de Chiná. Calle 11 s/n entre 22 y 28, Colonia Centro, Chiná, Campeche, México. C.P. 24050. Correo electrónico: [email protected] *Autor de correspondencia Resumen La influencia que tiene la radiación solar sobre la germinación y emergencia de plántulas no ha sido descrita para muchas de las especies tropicales de importancia maderable. La presente investigación se enfoca en la emergencia de plántulas de taxa maderables nativas de la Península de Yucatán bajo diferentes grados de sombra (0%, 35%, 60% y 90%). Para ello, se realizó la evaluación de las especies de Caesalpinia mollis (chakté) , (Piscidia piscipula) (jabín) y jujuché (Albizia tomentosa). C. molli y A. tomentosa presentaron diferencias entre tratamientos (p < 0.0001 y p < 0.0,1 respectivamente), ambas tuvieron mayor emergencia de plántulas con la luminosidad más elevada (0% de sombra). El tiempo de inicio de emergencia de las plántulas fue de cuatro a cinco días y la emergencia del 100% se logró en menos días con el 90% de sombra para las tres especies. Los resultados expresan que el porcentaje de sombra influye en la emergencia total de las plántulas. Palabras clave: Emergencia; sombra; nativas; plántulas. Abstract The influence of solar radiation on the germination and emergence of seedlings has not been described for many of the timber species present in the tropics. -
Ficus Aurea: Strangler Fig1 Edward F
ENH409 Ficus aurea: Strangler Fig1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction UF/IFAS Invasive Assessment Status: native Uses: indoors; reclamation; Bonsai Often starting out as an epiphyte nestled in the limbs of another tree, the native strangler fig is vine-like while young, later strangling its host with heavy aerial roots and eventually becoming a self-supporting, independent tree. Not recommended for small landscapes, strangler fig grows quickly and can reach 60 feet in height with an almost equal spread. The broad, spreading, lower limbs are festooned with secondary roots which create many slim but rigid trunks once they reach the ground and take hold. They become a maintenance headache as these roots need to be removed to keep a neat-looking landscape. The shiny, thick, dark green leaves create dense shade and the surface roots add to the problem of maintaining a lawn beneath this massive tree. The fruit drops and makes a mess beneath the Figure 1. Range tree. Description General Information Height: 50 to 60 feet Scientific name: Ficus aurea Spread: 50 to 70 feet Pronunciation: FYE-kuss AR-ee-uh Crown uniformity: irregular Common name(s): strangler fig, golden fig Crown shape: spreading, round Family: Moraceae Crown density: dense USDA hardiness zones: 10B through 11 (Figure 1) Growth rate: fast Origin: native to Florida, southern Mexico to Panama, and Texture: coarse western Caribbean Islands 1. This document is ENH409, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date November 1993. -
The Bark Paper Found in the Tomb at Huitzilapa Is Made from Ficus Tecolutensis.1 Also Known As Ficus Aurea
Bark Fiber Codex Paper The Hidden Codex is constructed on plant fiber that is covered with plaster for painting. The Hidden Codex fiber substrate base This type of writing surface is called Amate paper from the amate ficus that forms the base layer. It starts with processing raw fig fibers from the ficus tree family, the ficus aurea. Ficus aurea grows in Florida, the Caribbean and Mexico, and is also known as the strangler fig. The bark paper found in the tomb at Huitzilapa is made from Ficus tecolutensis.1 also known as Ficus aurea The woven mat is constructed by soaking the fibers, straightening them out, and then pounding them flat in a large crossing pattern. The fiber strands are strung or woven into mats and then applied with a white plaster limestone paste surface for painting. ficus aurea Amate tree growing in Guerrero 1 Benz, Bruce; Lorenza Lopez Mestas; Jorge Ramos de la Vega (2006). "Organic Offerings, Paper, and Fibers from the Huitzilapa Shaft Tomb, Jalisco, Mexico". Ancient Mesoamerica. 17 (2). pp. 283–296.. Other Codex Documents on Bark Fiber Paper: Four Maya codex documents use this construction method: The Dresden, The Grolier, The Madrid, and The Paris. Codex Dresden: The chalk-coated writing material, amatl , is a paper-like matter produced from fig-tree fiber by means of soaking and beating2 . The Grolier Codex is constructed of 13th-century amatl paper and contains thin red lines outlining the paintings.3 Fiber substrate is visible at the lower left of the image. The Madrid Codex was made from a long strip of amate paper that was folded up accordion-style.