Chapter 4. Biological Environment
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh
Univ. J. zool. Rajshahi. Univ. Vol. 35, 2016, pp. 7-15 ISSN 1023-6104 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Present status of fish biodiversity and abundance in Shiba river, Bangladesh D.A. Khanom, T Khatun, M.A.S. Jewel*, M.D. Hossain and M.M. Rahman Department of Fisheries, University of Rajshahi, Rajshahi 6205, Bangladesh Abstract: The study was conducted to investigate the abundance and present status of fish biodiversity in the Shiba river at Tanore Upazila of Rajshahi district, Bangladesh. The study was conducted from November, 2016 to February, 2017. A total of 30 species of fishes were recorded belonging to nine orders, 15 families and 26 genera. Cypriniformes and Siluriformes were the most diversified groups in terms of species. Among 30 species, nine species under the order Cypriniformes, nine species of Siluriformes, five species of Perciformes, two species of Channiformes, two species of Mastacembeliformes, one species of Beloniformes, one species of Clupeiformes, one species of Osteoglossiformes and one species of Decapoda, Crustacea were found. Machrobrachium lamarrei of the family Palaemonidae under Decapoda order was the most dominant species contributing 26.29% of the total catch. In the Shiba river only 6.65% threatened fish species were found, and among them 1.57% were endangered and 4.96% were vulnerable. The mean values of Shannon-Weaver diversity (H), Margalef’s richness (D) and Pielou’s (e) evenness were found as 1.86, 2.22 and 0.74, respectively. Relationship between Shannon-Weaver diversity index (H) and pollution indicates the river as light to moderate polluted. -
Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands
Micronesica 29(1): 37-48 , 1996 Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands DONALD W. BUDEN Division Mathematics of and Science, College of Micronesia, P. 0 . Box 159 Kolonia, Polmpei, Federated States of Micronesia 96941. Abstract-Fifteen species of reptiles, 18 birds, and five mammals are recorded from Pakin Atoll. None is endemic to Pakin and all of the residents tend to be widely distributed throughout Micronesia. Intro duced species include four mammals (Rattus exulans, Canis fami/iaris, Fe/is catus, Sus scrofa), the Red Junglefowl (Gallus gal/us) among birds, and at least one lizard (Varanus indicus). Of the 17 indigenous birds, ten are presumed or documented breeding residents, including four land birds, a heron, and five terns. The Micronesian Honeyeater (My=omela rubratra) is the most common land bird, followed closely by the Micro nesian Starling (Aplonis opaca). The vegetation is mainly Cocos forest, considerably modified by periodic cutting of the undergrowth, deliber ately set fires, and the rooting of pigs. Most of the present vertebrate species do not appear to be seriously endangered by present levels of human activity. But the Micronesian Pigeon (Ducula oceanica) is less numerous on the settled islands, probably reflecting increased hunting pressure, and sea turtles (especially Chelonia mydas) and their eggs are harvested indiscriminately . Introduction Terrestrial vertebrates have been poorly studied on many of the remote atolls of Micronesia, and distributional records are lacking or scanty for many islands. The present study documents the occurrence and relative abundance of reptiles, birds, and mammals on Pakin Atoll for the first time. -
Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ -
Reappraisal of Hermit Crab Species (Crustacea: Anomura: Paguridea) Reported by Camill Heller in 1861, 1862 and 1865
Ann. Naturhist. Mus. Wien 103 B 135 - 176 Wien, Dezember 2001 Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill Heller in 1861, 1862 and 1865 P.A. McLaughlin1 & P.C. Dworschak2 Abstract Redescriptions based on the type material are presented for 11 species of hermit crabs described as new by Camill Heller (HELLER 1861a, c, 1862, 1865): Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - for which a lectotype is designated, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) and Paguristes ciliatus HELLER, 1862. For 7 of those, detailed figures are provided. In addition, the material from the Red Sea along with the hermit crabs obtained during the circumnavigation of the earth by the fri- gate 'Novara' and identified by him have been reevaluated and necessary corrections made. Keywords: Crustacea, Anomura, Paguridea, Camill Heller, Novara, lectotype designation Zusammenfassung Elf Arten von Einsiedlerkrebsen, die Camill Heller als neue Arten beschrieb (HELLER 1861a, c, 1862, 1865), werden hier anhand des Typenmaterials wiederbeschrieben: Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - für die ein Lectotypus designiert wird, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) und Paguristes ciliatus HELLER, 1862. Zu sieben Arten davon werden detailierte Zeichnungen präsentiert. -
Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research. -
Flying Fish! by Guy Belleranti
Name: __________________________________ It's Not a Bird... Not a Plane... It's a Flying Fish! by Guy Belleranti Did you know there is group of fish known as flying fish? Flying fish are found in all the major oceans. There are over 40 known species. They are most common in warmer tropical and sub-tropical areas. Of course, a flying fish doesn't actually fly like a birds does. But it can jump out of the water and glide through the air. How does it do this? First, the flying fish swims near the water's surface. Holding its side (pectoral) fins close to its body, the fish's tail (called the caudal fin) propels the Night fishermen use lights to help them catch torpedo-shaped fish at speeds of 35 to 40 miles flying fish. The fishermen know that flying fish are per hour. The tail is forked, with the lower lobe attracted to the lights so this is a great way to lure longer than the upper lobe. This lower lobe acts the fish to their boats and canoes. like an outboard motor. Angling upward, the fish bursts above the water's surface and into the air. Near Catalina Island, off the coast of California, Then the fish spreads its extra large pectoral fins night tour boats also use lights. But this time the and glides for hundreds of feet. What a great lights are used to attract flying fish for tourists to way to escape predators like mackerel, marlin, see not for fishermen to catch. One type of flying tuna and swordfish! fish that might be seen on these tours is the California flying fish. -
America&Apos;S Unknown Avifauna: the Birds of the Mariana Islands
ß ß that time have been the basis for con- America's unknown avifauna. siderable concern (Vincent, 1967) and indeed appear to be the basis for the the birds of inclusion of several Mariana birds in the U.S. Fish & Wildlife Service (1976) list of the Mariana Islands Endangered Species.These brief war- time observationswere important, but no significant investigationshave been conductedin the ensuingthirty yearsto "Probably no otherAmerican birds determine the extent to which the are aspoorly known as these." endemic avifauna of these islands may haverecovered. Importantly, no assess- mentshave been made of the impactof H. Douglas Pratt, Phillip L. Bruner the military's aerial planting of the exoticscrubby tree known as tangan- and Delwyn G. Berrett tangan, Leucaenaglauca, to promote revegetationafter the war. This 'treeis known as "koa haole" in Hawaii. restricted both in their time for bird ß ß announcesthe signthat greets observation and in their movements on v•sitors to Guam. Few Americans realize the islands. Their studies were made in authorsURING THEvisitedSUMMER the islandsOF1076the of that the nation's westernmost territories 1945 and 1946 when most of the Mari- Saipan,Tinian, Rota, and Guam, and m he across the International Date Line in anaswere just beginningto recoverfrom 1978 Bruner and Pratt returned to Sai- the far westernPacific. Guam, the larg- the ravagesof war (Baker, 1946).Never- pan and Guam. We havespent a total of est and southernmost of the Mariana theless, population estimates made at 38 man/dayson Saipan,four on Tinian, Islands,has been a United Statesposses- s•on since Spain surrendered her sov- & Agrihan ereigntyover the island at the end of the Sparash-AmericanWar. -
SPC Traditional Marine Resource Management and Knowledge
ISSN 1025-7497 Secretariat of the Pacific Community TRADITIONAL Marine Resource Management and Knowledge Number 18 — August 2005 INFORMATION BULLETIN Group Coordinator and Bulletin Editor: Kenneth Ruddle, Katsuragi 2-24-20, Kita-ku, Kobe-shi, Hyogo-ken 651-1223, Japan; Email: [email protected] — Production: Information Section, Marine Resources Division, SPC, BP D5, 98848 Noumea Cedex, New Caledonia. Fax: +687 263818; Email: [email protected]. The bulletin is also available at: http://www.spc.int/coastfish — Produced with financial assistance from France. Editor’s note We include three articles in this edition. In the first, “Fishing for drummerfish (Kyphosidae) with termites and spider webs Inside on the weather coast of Guadalcanal, Solomon Islands”, William T. Atu describes a unique traditional fishing method this issue known as bulukochi, which was used by his forefathers to catch drummerfish. This fishing method is on the verge of disap- pearing, and the only person who knows about it and the asso- ciated customs is Mr Atu’s elderly uncle. So Mr Atu decided to Fishing for drummerfish preserve some of this information here, because, as he says (Kyphosidae) with termites and “With the passing of my uncle the techniques and intricate spider webs on the weather coast customs associated with this method will be lost forever”. of Guadalcanal, Solomon Islands William T. Atu p. 3 William T. Atu has set a wonderful example. We hope it will stimulate other people to set about documenting “endangered Indigenous ecological knowledge information” in their own communities. This Information (IEK) of the aggregating and Bulletin would be delighted to publish such material. -
T.* & Ng, P. K. L. 2016 a New Species of Land Hermit Crab
Rahayu, Shih & Ng: New species of Coenobita from Singapore RAFFLES BULLETIN OF ZOOLOGY Supplement No. 34: 470–488 Date of publication: 29 June 2016 http://zoobank.org/urn:lsid:zoobank.org:pub:5A71C157-03AC-4B03-B73E-43BCC019C6E7 A new species of land hermit crab in the genus Coenobita Latreille, 1829 from Singapore, Malaysia and Indonesia, previously confused with C. cavipes Stimpson, 1858 (Crustacea: Decapoda: Anomura: Coenobitidae) Dwi Listyo Rahayu1, 2, Hsi-Te Shih3* & Peter K. L. Ng4 Abstract. A new species of land hermit crab in the genus Coenobita Latreille, 1829 (Anomura: Coenobitidae), C. lila, is described from Singapore and adjacent countries. The new species has previously been confused with C. cavipes Stimpson, 1858, but they can be distinguished by the former possessing dense tubercles on the outer face of the palm of the left cheliped and the presence of a large sternal protuberance between the male fifth pereopods. Recognition of the new species is further supported by molecular data. In this study, the presence of C. cavipes in Taiwan is confirmed, and the status of C. baltzeri Neumann, 1878, is discussed. Key words. Land hermit crab, taxonomy, Coenobita lila, new species, C. cavipes, C. baltzeri, molecular data INTRODUCTION size of the sternal protuberance between the coxae of the male fifth pereopods (small in C. violascens, moderately large in The common land hermit crab Coenobita cavipes Stimpson, C. cavipes). McLaughlin et al. (2010) followed Nakasone 1858, was described from Loo Cho (= Ryukyu Islands, Japan) (1988) in recognising the species as distinct and treated C. (Nakasone, 1988: 172) by Stimpson (1858) and is regarded baltzeri Neumann, 1878 (described from Java), as a junior as widely distributed in the Indo-West Pacific region. -
The Effects of Turbidity and Suspended Sediments on ESA-Listed Species from Projects Occurring in the Greater Atlantic Region
Greater Atlantic Region Policy Series 18-02 The Effects of Turbidity and Suspended Sediments on ESA-Listed Species from Projects Occurring in the Greater Atlantic Region Drafted November 2016 Published July 2018 Amanda Johnson Greater Atlantic Region Policy Series | NOAA Fisheries | Greater Atlantic Regional Fisheries Office 55 Great Republic Drive | Gloucester, MA 01930 KEYWORDS Turbidity, Endangered Species Act, Environmental Impact The Greater Atlantic Region Policy Series is a secondary publication series based in the NOAA Fisheries Greater Atlantic Regional Fisheries Office in Gloucester, MA. Publications in this series include works in the areas of marine policy and marine policy analysis. Please visit www.greateratlantic.fisheries.noaa.gov/policyseries/ for more information. This document may be cited as: Johnson, A. 2018. The Effects of Turbidity and Suspended Sediments on ESA-Listed Species from Projects Occurring in the Greater Atlantic Region. Greater Atlantic Region Policy Series 18-02. NOAA Fisheries Greater Atlantic Regional Fisheries Office - www.greateratlantic.fisheries.noaa.gov/policyseries/. 106p. ii Table of Contents EXECUTIVE SUMMARY ............................................................................................................ 6 INTRODUCTION .......................................................................................................................... 7 STATEMENT OF ISSUE............................................................................................................... 7 TURBIDITY -
Shell Resource Partitioning As a Mechanism of Coexistence in Two Co‑Occurring Terrestrial Hermit Crab Species Sebastian Steibl and Christian Laforsch*
Steibl and Laforsch BMC Ecol (2020) 20:1 https://doi.org/10.1186/s12898-019-0268-2 BMC Ecology RESEARCH ARTICLE Open Access Shell resource partitioning as a mechanism of coexistence in two co-occurring terrestrial hermit crab species Sebastian Steibl and Christian Laforsch* Abstract Background: Coexistence is enabled by ecological diferentiation of the co-occurring species. One possible mecha- nism thereby is resource partitioning, where each species utilizes a distinct subset of the most limited resource. This resource partitioning is difcult to investigate using empirical research in nature, as only few species are primarily limited by solely one resource, rather than a combination of multiple factors. One exception are the shell-dwelling hermit crabs, which are known to be limited under natural conditions and in suitable habitats primarily by the avail- ability of gastropod shells. In the present study, we used two co-occurring terrestrial hermit crab species, Coenobita rugosus and C. perlatus, to investigate how resource partitioning is realized in nature and whether it could be a driver of coexistence. Results: Field sampling of eleven separated hermit crab populations showed that the two co-occurring hermit crab species inhabit the same beach habitat but utilize a distinct subset of the shell resource. Preference experiments and principal component analysis of the shell morphometric data thereby revealed that the observed utilization patterns arise out of diferent intrinsic preferences towards two distinct shell shapes. While C. rugosus displayed a preference towards a short and globose shell morphology, C. perlatus showed preferences towards an elongated shell morphol- ogy with narrow aperture. Conclusion: The two terrestrial hermit crab species occur in the same habitat but have evolved diferent preferences towards distinct subsets of the limiting shell resource. -
High-Resolution Acoustic Cameras Provide Direct and Efficient
applied sciences Article High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters Céline Artero 1,2,* , Simon Marchetti 3, Eric Bauer 3, Christophe Viala 4, Claire Noël 3, Christopher C. Koenig 2, Rachel Berzins 1 and Luis Lampert 5 1 Office Français de la Biodiversité (ex Office National de la Chasse et de la Faune Sauvage), 97338 Cayenne CEDEX, French Guiana; [email protected] 2 Coastal and Marine Laboratory, Florida State University, St Teresa Beach, FL 32358, USA; [email protected] 3 SEMANTIC T.S., 83110 Sanary-sur-Mer, France; [email protected] (S.M.); [email protected] (E.B.); [email protected] (C.N.) 4 Seaviews, 13600 La Ciotat, France; [email protected] 5 Institut Français de Recherche Pour l’Exploitation de la MER, Dyneco/Pelagos, 29280 Plouzané, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)-676038745 Abstract: Monitoring fish species populations in very turbid environments is challenging. Acoustic cameras allow work in very poor visibility but are often deployed as a fixed observation point, limiting the scope of the survey. A BlueView P900-130 acoustic camera was deployed in rocky marine habitats off the coast of French Guiana in order to assess the total abundance, size structure and spatial Citation: Artero, C.; Marchetti, S.; distribution of a demersal fish population. The relevancy of using an acoustic camera to achieve these Bauer, E.; Viala, C.; Noël, C.; Koenig, three objectives was evaluated by comparing acoustic data to those obtained from fishing surveys.