Title Various Distribution Patterns of Green Fluorescence in Small
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Title Synchronous Mass Release of Mature Medusae from The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Synchronous Mass Release of Mature Medusae from the Title Hydroid Halocordyle disticha (Hydrozoa, Halocordylidae) and Experimental Induction of Different Timing by Light Changes Author(s) Genzano, G. N.; Kubota, S. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (2003), 39(4-6): 221-228 Issue Date 2003-03-31 URL http://hdl.handle.net/2433/176311 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 39 (4/6): 221-228,2003 221 Synchronous Mass Release of Mature Medusae from the Hydroid Halocordyle disticha (Hydrozoa, Halocordylidae) and Experimental Induction of Different Timing by Light Changes G. N. GENZANO" and S. KUBOTA" " CONICET - Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3250 (7600) Mar del Plata, Argentina "Seto Marine Biological Laboratory Kyoto, University, Shirahama, Wakayama 649-2211, Japan Abstract The timing mechanism for synchronous mass release of mature medusae of Halocordyle disticha was studied, using colonies from Shirahama, Wakayama, Japan, which were kept in a 450 I aquarium tank. In near natural conditions medusa release is correlated with sudden drop of light intensity such as occurs around sunset. Timing could be manipulated by controlling light intensity. Artificial sunset 2 hours earlier than normal caused mass release of medusae earlier than under natural conditions, whereas sunset artificially delayed 3 hours later than normal caused continuous release of medusa after the onset of darkness. The spawning of gametes of H. disticha is almost simultaneous with medusa release, and since the medusa has an ephemeral planktonic existence, synchrony of mass medusa release and also spawning of gametes may maximize fertilization success. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Title the METAMORPHOSIS of the ANTHOMEDUSA, POLYORCHIS
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository THE METAMORPHOSIS OF THE ANTHOMEDUSA, Title POLYORCHIS KARAFUTOENSIS KISHINOUYE Author(s) Nagao, Zen PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1970), 18(1): 21-35 Issue Date 1970-09-16 URL http://hdl.handle.net/2433/175622 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University THE METAMORPHOSIS OF THE ANTHOMEDUSA, POLYORCHIS KARAFUTOENSIS KISHINOUYE ZEN NAGAO Laboratory of Science Education, Kushiro Branch, Hokkaido University of Education, Kushiro, Hokkaido, Japan With 11 Text-figures· One of the highest Anthomedusa, Polyorchis karafutoensis was first described by KISHINOUYE (1910) from Sakhalin. Since then the medusa was sometimes reported from the southern coast and the eastern lagoon of Sakhalin and the eastern part of Hokkaido, Japan by UcHIDA (1925, 1927, 1940). However, its life history remains mostly unknown, as also in other members of the genus Polyorchis except for the fragmental records of the medusan development in P. penicillatus by FEWKES ( 1889) and FOERSTER (1923), in P. karafutoensis by UcHIDA (1927) and in P. montereyensis by SKOGSBERG ( 1948). In Akkeshi Bay Polyorchis karafutoensis is commonly found from middle April to late July. The early development of this species was previously reported by the author (NAGAO, 1963). In the present paper the metamorphosis and the growth in the medusan stage are dealt with. The medusae were collected in Akkeshi Bay and in Akkeshi Lake which is a lagoon and is directly connected with the bay (cf. UcHIDA et al., 1963). The medusae were collected by surface tow every week on the average during April - July in 1963 and 1965. -
Special Bulletin
A^^;^^ ifm^, %^D*^(^i»i(*t^'^: !;u>^*«*»?.j^g^«^ ^^^' ^f^r&^l ^ Qihuh^"^ f <^i*^M*i ;^p>'*,^' #*^»» S^sik^^M^"^ cemi \% ccc r?< CC C<^<^ C/<" < ( c cc € t €L< C Ccf Vfi c^rcrc ^^crx c r*f rf^ '1-'^ if tf ^' 4<3s ^ * fc< jrt ii% 4 C c?r fr c c ^ Jl "4r' t CC^iL tccr €f((C4fii cTiC .y cv< 5rpiii4 fed «i5*C t?^C <?C< ' tC^^( C(K.:Cfe CfCr € f CWC e <r 41:^ iT V rA € • i ^<* 4»iC<a 41 ^' ^«rTer .'• «^^ 4ii/ r4f jaK4i 11. ^^^< V <«45i:4HlM 'fer^ '. -#' ''< 1 <_^K r 43^y 41 ^ CCVVV r ±f-S «.^/ Yin 4 SMITHSONIAN INSTITUTION. UNITED STATES NATIONAL MUSEUM. SPECIAL BULLETIN. AMEEICAN HTDROIDS FA-RT III. THE CAMPANULAKID^ AND THE BONNEVIELLIDJE, WITH TWENTY-SEVEN PLATES. CHARLES CLEVELAND NUTTING, PROFESSOR OF ZOOLOaY, STATE UNIVERSITY OF IOWA. WASHINGTON: GOVERNMENT PRINTING OPPICE. 1915 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM. Issued April 10, 1915. INTRODUCTORY NOTE. During the 10 years which have elapsed since the publication of Part II of this work, in 1904, a number of new workers have arisen in the field of marine zoology and not a few of these have produced valuable works on the H5^droida and described many new species of Cam- panularidse. It remains true, however, that no one has attempted to give a comprehensive account of American forms, although the west coast of North America has been the recipient of special attention by several able writers, such as Harry Beal Torrey and Charles McLean Fraser. -
Hydrozoa, Cnidaria) in the Collection of the Zoological Museum, University of Tel-Aviv, Israel
Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel W. Vervoort Vervoort, W. Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel. Zool. Med. Leiden 67 (40), 24.xii.1993:537-565.— ISSN 0024-0672. Key words: Cnidaria; Hydrozoa; Hydroida; eastern Mediterranean fauna; Red Sea hydroid fauna. Twenty-eight hydroid species are recorded from the eastern Mediterranean and the northern part of the Red Sea, all material originating from the collections of the Museum of the Zoological Institute, Tel-Aviv University. The collection also included four species that could only be identified to generic level. Though the majority had previously been recorded from either the Mediterranean or the Red Sea, some constitute the first definite record from Israeli coastal waters. All material has been re- deposited in the Tel-Aviv collection; slides and some duplicate samples are in the collections of the National Museum of Natural History (Nationaal Natuurhistorisch Museum, now also incorporating the Rijksmuseum van Natuurlijke Historie), Leiden, the Netherlands. W. Vervoort, Nationaal Natuurhistorisch Museum, RO. Box 9517, 2300 RA, Leiden, The Netherlands. Introduction The collection of Hydroida reported upon below was sent to me for identification several years ago by Dr Y. Benayahu, Zoological Museum, University of Tel-Aviv; additional specimens have intermittently been received. The collection is of interest because it contains a number of samples from Mediterranean waters off Israel, a region poor in hydroid records, though a report on a smaller collection from the same area and also belonging to the Zoological Museum, Tel-Aviv, was previously published by Picard (1950). -
Moodle Interface
Morphology and Physiology of Obelia Discipline Course – I Semester - II Paper : Obelia Lesson: Morphology and Physiology of Obelia Lesson Developer: Sarita Kumar College: Acharya Narendra Dev College University of Delhi Institute of Lifelong Learning, University of Delhi Morphology and Physiology of Obelia Table of Contents • Introduction • Habit and Habitat • Morphology • Hydrorhiza • Hydrocaulus • Living Tissue of Obelia - Coenosarc • Epidermis • Gastrodermis • Protective Covering - Perisarc • Morphology of a Gastrozooid • Morphology of a Gonozooid • Morphology of a Medusa • Locomotion in Obelia • Nutrition in Obelia • Respiration in Obelia • Excretion and Osmoregulation in Obelia • Sense Organ - Statocyst • Reproduction in Obelia • Asexual Reproduction • Sexual Reproduction • Metagenesis • Polymorphism • Summary • Exercise/Practice • Glossary • References/Bibliography/Further Reading Institute of Lifelong Learning, University of Delhi 1 Morphology and Physiology of Obelia Introduction Obelia is a sedentary colonial marine cnidarian which grows upright in a branching tree-like form and has several specialized feeding and reproductive polyps. It is commonly called sea-fur and exists in both asexual, sessile, polypoid stage and sexual, free-swimming medusoid phase. Value Addition: Interesting to Know!! Heading Text: Origin of word ‘Obelia’ Body Text: The word Obelia is probably derived from the Greek word – ‘obeliās’, which means a loaf baked on a spit; obel (ós) - a spit + -ias noun suffix. Source: http://www.answers.com/topic/obelia The common species of Obelia are: a) Obelia geniculata (Knotted thread hydroid) b) Obelia longissima (Sessile hydroid) c) Obelia dichotoma (Sea thread hydroid) d) Obelia bidentata (Double toothed hydroid) Value Addition: Fact File! Heading Text: Different species of Obelia Body Text: Obelia longissima is a long, flexible hydroid colony with a prominent main stem and branches. -
Introduced Marine Biota in Western Australian Waters
DOI: 10.18195/issn.0312-3162.25(1).2008.001-044 Records of the Western Australian ;\Iuseum 25: 1 44 (2008), Introduced marine biota in Western Australian waters 2 2 John M. Huisman', Diana S. Jones , Fred E. Wells" and Timothy Burton I Western Australian Ilcrbarium, l)epartnwnt of Fnvironnwnt and Conservation, Locked Bag 11).1, Bentley Delivery Centre, Western Australia 6983, Australia, and School of Biological Sciences and Biotl'chnology, Murdoch University, Murdoch, Western Australia 6150, Australia, Department of Aquatic Zoology, vVestern Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 69R6, Australia, ' Western Australian Department of Fisheries, Level 3,I6R St Georges Terrace, Perth, Western Australia 6000, Australia, Abstract - An annotated compendium is presented of 102 species of marine algae and animals that have been reported as introduced into Western Australian marine and estuarine waters, four of which arc on the Australian national list of targeted marine pest species, For each species the authority, distribution (both in Western Australia and elsewhere), voucher specimen(s) and remarks are given, Sixty species are considered to have been introduced through human activity, including three on the list of Australian declared marine pests, The most invasive groups are: bryozoans (15 species), crustaceans (13 species) and molluscs (9 species), Seven of these introduced species, including four natural introductions, have not been found recently and are not presently considered to be living in Western Australia, -
Cnidaria: Hydrozoa) De La Coronilla-Cerro Verde (Rocha, Uruguay): Primer Inventario Y Posibles Mecanismos De Dispersión
LICENCIATURA EN CIENCIAS BIOLOGICAS PROFUNDIZACION OCEANOGRAFIA Fauna de hidroides (Cnidaria: Hydrozoa) de La Coronilla-Cerro Verde (Rocha, Uruguay): primer inventario y posibles mecanismos de dispersión Valentina Leoni Orientador: Dr. Alvar Carranza / Centro Universitario Regional Este – Museo Nacional de Historia Natural, Uruguay Coorientador: Dr. Antonio C. Marques / Universidad de San Pablo, Brasil Laboratorio de ejecución: Área Biodiversidad y Conservación, Museo Nacional de Historia Natural Febrero 2014 Montevideo, Uruguay Agradecimientos A Fabrizio Scarabino, mi tercer orientador, por la confianza, las charlas, el incentivo, las ganas e impulso en estos años. A Alvar Carranza por la dedicación, la paciencia y las ganas. A Antonio C. Marques por el tiempo dedicado, la confianza y por recibirme en su laboratorio. A todo el equipo Karumbé, particularmente a Alejandro Fallabrino, Andrés Estrades y Luciana Alonso por el apoyo con la obtención de muestras y bibliografía. Al equipo de captura de la temporada 2011: Gustavo Martínez Souza, Bruno Techera y Mauro Rusomango, por la ayuda en campo. A todos los voluntarios de enero 2011 por la ayuda en la colecta. A Gaby Vélez-Rubio por los comentarios al trabajo. A Thais Miranda por toda su paciencia y ayuda en Sao Paulo. A Renato Nagata, Sergio Stampar, Ze y Neto, por la buena onda durante nuestra estadía en Sao Paulo. A Seba W. Serra por las fotos tomadas en campo. A Gustavo Lecuona, quien hizo siempre que el trabajo sea mucho más agradable en el museo. A Carla Kruk por los aportes y correcciones al trabajo. A la ANII por la financiación. Al Museo Nacional de Historia Natural por brindarme el espacio de trabajo. -
Cnidaria: Hydrozoa: Leptothecata and Limnomedusae
Aquatic Invasions (2018) Volume 13, Issue 1: 43–70 DOI: https://doi.org/10.3391/ai.2018.13.1.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Hydroids (Cnidaria: Hydrozoa: Leptothecata and Limnomedusae) on 2011 Japanese tsunami marine debris landing in North America and Hawai‘i, with revisory notes on Hydrodendron Hincks, 1874 and a diagnosis of Plumaleciidae, new family Henry H.C. Choong1,2,*, Dale R. Calder1,2, John W. Chapman3, Jessica A. Miller3, Jonathan B. Geller4 and James T. Carlton5 1Invertebrate Zoology, Royal British Columbia Museum, 675 Belleville Street, Victoria, BC, Canada, V8W 9W2 2Invertebrate Zoology Section, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6 3Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr., Newport, Oregon 97365, USA 4Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA 5Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355, USA Author e-mails: [email protected] (HHCC), [email protected] (DRC), [email protected] (JWC), [email protected] (JTC) *Corresponding author Received: 13 May 2017 / Accepted: 14 December 2017 / Published online: 20 February 2018 Handling editor: Amy Fowler Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES).