Standardising the Terminology Used in Marine Invasion Biology and Updating South African Alien Species Lists

Total Page:16

File Type:pdf, Size:1020Kb

Standardising the Terminology Used in Marine Invasion Biology and Updating South African Alien Species Lists African Journal of Marine Science ISSN: 1814-232X (Print) 1814-2338 (Online) Journal homepage: http://www.tandfonline.com/loi/tams20 Lost in translation? Standardising the terminology used in marine invasion biology and updating South African alien species lists TB Robinson, ME Alexander, CA Simon, CL Griffiths, K Peters, S Sibanda, S Miza, B Groenewald, P Majiedt & KJ Sink To cite this article: TB Robinson, ME Alexander, CA Simon, CL Griffiths, K Peters, S Sibanda, S Miza, B Groenewald, P Majiedt & KJ Sink (2016) Lost in translation? Standardising the terminology used in marine invasion biology and updating South African alien species lists, African Journal of Marine Science, 38:1, 129-140, DOI: 10.2989/1814232X.2016.1163292 To link to this article: http://dx.doi.org/10.2989/1814232X.2016.1163292 View supplementary material Published online: 12 Apr 2016. Submit your article to this journal Article views: 34 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tams20 Download by: [University of Stellenbosch] Date: 27 May 2016, At: 04:03 African Journal of Marine Science 2016, 38(1): 129–140 Copyright © NISC (Pty) Ltd Printed in South Africa — All rights reserved AFRICAN JOURNAL OF MARINE SCIENCE ISSN 1814-232X EISSN 1814-2338 http://dx.doi.org/10.2989/1814232X.2016.1163292 Lost in translation? Standardising the terminology used in marine invasion biology and updating South African alien species lists TB Robinson1*, ME Alexander1,2, CA Simon3, CL Griffiths4, K Peters1, S Sibanda5, S Miza5, B Groenewald5, P Majiedt5 and KJ Sink5 1 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa 2 Current affiliation: Institute of Biomedical and Environmental Health Research (IBEHR), School of Science and Sport, University of the West of Scotland, Paisley, Scotland 3 Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa 4 Centre for Invasion Biology, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa 5 Marine Programme, South African National Biodiversity Institute, Centre for Biodiversity Conservation, Cape Town, South Africa * Corresponding author, e-mail: [email protected] Confusion between terms and ambiguities among definitions have long plagued the field of invasion biology. One result is disruption in flow of information from researchers to policy-makers and managers who rely on science to inform regulatory frameworks and management actions. We reviewed the South African marine biology literature to quantify the current usage of terminology describing marine invasions and found a variety of terms in use, few of which are defined when used. In response, we propose standard terminology that aligns with international practice. We then interpreted the Blackburn unified framework for biological invasions within the marine context and used this as a transparent way to apply the standardised terms to an updated list of marine alien species for the country. This resulted in the recognition of 36 alien and 53 invasive species within South Africa. Most notably, follow-up research is required to confirm the status of at least 11 listed species, the majority of which have been recorded only once, or not in the past 25 years. It is hoped that by standardising terminology, marine science in South Africa will better support authorities charged with managing the threat posed by marine alien species. Keywords: definitions, invasive species, state of knowledge Online supplementary material: Supplementary Appendix S1, listing the invasion biology references reviewed in this paper, can be found online at http://dx.doi.org/10.2989/1814232X.2016.1163292. Introduction The field of invasion biology has grown exponentially 2000). This is primarily because the unclear use of termi- since the publication of Charles Elton’s seminal book ‘The nol ogy hampers comparisons of invasion patterns and Downloaded by [University of Stellenbosch] at 04:03 27 May 2016 ecology of invasions by plants and animals’ (Elton 1958). processes across different regions and taxa (Blackburn et This reflects both increasing rates of biological invasions al. 2011). Importantly, such confusion can also impede the across multiple regions and ecosystems (Simberloff et al. flow of information from researchers to policy-makers and 2013) and the recognition that these invasions pose grave managers, who rely on clearly and consistently expressed threats to natural systems (Vilà et al. 2010) and can have data from the scientific literature to inform regulatory serious social and economic implications (Colautti et al. frameworks and management actions (Bullock et al. 1997; 2006; Reaser et al. 2007). As such, the systematic study of Occhipinti-Ambrogi and Galil 2004). invasion ecology has become an important multidisciplinary Invasion biology in South Africa is not immune to such subfield of ecology in its own right (Heger et al. 2013). problems. An increased focus on biological invasions in As a result of the proliferation of invasion literature, the past 30 years has seen a proliferation of publications combined with the emotive and often subjective interpret- on the topic, and, in recognition of the threat posed by ation of the associated terminology, a variety of terms invasive species, South African environmental legislation have been applied to common invasion biology concepts has developed alongside the science. Through the National (Colautti and MacIsaac 2004; Falk-Petersen et al. 2006). Environmental Management: Biodiversity Act (NEMBA), Inconsistent application of these terms and concepts has Act No. 10 of 2004 (RSA 2004), our legislative framework led to confusion in defining the nature of biological invasions seeks to prevent future invasions, and to manage current (Shrader-Frechette 2001; Blackburn et al. 2011), and has invasions to minimise their negative impacts. Nonetheless, retarded progress in invasion biology (Davis and Thompson the inconsistent use of terminology among different African Journal of Marine Science is co-published by NISC (Pty) Ltd and Taylor & Francis 130 Robinson, Alexander, Simon, Griffiths, Peters, Sibanda, Miza, Groenewald, Majiedt and Sink research papers, as well as between the scientific literature online). In total, 12 terms were used to define the status of at large and legal instruments, can be challenging for those these alien and invasive species. The most commonly used charged with implementing legislative requirements. terms were invasive and alien, appearing in 75% and 48% Blackburn et al. (2011) proposed a theoretical framework of papers, respectively. These were followed by the term aimed at providing a single conceptual model that could introduced, which was used in 44% of papers. Although 47 be used across different taxa and environments to consoli- papers provided a definition for at least one such term used, date the range of concepts, terms and definitions found 91% of these papers did not define all terms they used. in invasion biology literature. Among other things the Notably, no papers made any reference to the legal defini- framework provides terminology and enables classification tions of alien and invasive species as per South African of populations at various stages in the invasion process, i.e. legislation. These are as follows: alien – ‘species that are during transport, introduction, establishment and spread. not indigenous or indigenous species that are translocated While often applied to individual species (e.g. Jones et al. or are intended to be translocated outside their natural distri- 2013; Weyl and Coetzee 2014) this framework has also bution range in nature’; invasive – ‘species whose establish- been interpreted for taxonomic groups (e.g. freshwater fish ment and spread outside of their natural distribution range, [Ellender and Weyl 2014] and trees [Wilson et al. 2014]). threaten ecosystems, habitats or other species or have a To streamline the dissemination of information about the demonstrable potential to threaten ecosystems, habitats or arrival, spread and impacts of marine alien species along other species, or may result in economic or environmental the South African coast, our aims here are to: (1) quantify harm or harm to human health’ (RSA 2004: 12). Of the the current usage of terminology describing marine seven papers that proposed management action, only one invasions in South Africa; (2) propose standard terminology contained any reference to defining the terms used. for use in the field that aligns with international practice; (3) interpret within the marine context the unified framework Development of standard terms and a marine interpre­ proposed by Blackburn et al. (2011) for biological invasions; tation of the Blackburn et al. (2011) framework and (4) use this as a transparent way to apply the standard- A review of the international literature considering invasion ised terms to an updated list of marine alien and invasive terminology revealed considerable consistency in the defini- species present in the country. tion of alien species. However, the defining characteristics applied to invasive species have changed through time. Material and methods Notably, since 2008 there has been a movement away from defining invasive species in terms of impact. Rather, Use of terminology to date it has been suggested that spread within the non-native To examine the terminology
Recommended publications
  • REVISED Marine Molluscs in Nearshore Habitats of the United
    1 REVISED 2 3 Marine Molluscs in Nearshore Habitats of the United Arab Emirates: 4 Decadal Changes and Species of Public Health Significance 5 6 Raymond E. Grizzle1*, V. Monica Bricelj2, Rashid M. AlShihi3, Krystin M. Ward1, and 7 Donald M. Anderson4 8 9 1Jackson Estuarine Laboratory 10 University of New Hampshire 11 Durham, NH 03824, U.S.A. 12 [email protected] 13 14 2Department of Marine and Coastal Sciences 15 Haskin Shellfish Laboratory, Rutgers University, NJ 08349, U.S.A. 16 17 3Ministry of Climate Change and Environment 18 Marine Environment Research Centre, Umm Al Quwain, U.A.E. 19 20 4Biology Department, Woods Hole Oceanographic Institution 21 Woods Hole, MA 02543, U.S.A. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 LRH: Grizzle, Bricelj, AlShihi, Ward, Anderson 41 42 RRH: Marine Molluscs in the United Arab Emirates 43 44 45 46 1 47 ABSTRACT 48 49 This paper describes the results of three qualitative surveys of marine molluscs conducted in 50 December 2010 and May 2011 and 2012 in nearshore benthic habitats along the Arabian Gulf and 51 Gulf of Oman coasts of the United Arab Emirates. Findings are compared to historical studies, 52 focusing on extensive surveys from the 1960s and 1970s. Molluscan species of public health 53 significance are identified based on their potential as vectors of algal toxins in light of the recent 54 occurrence of harmful algal blooms (HABs) in the region. Habitats sampled included intertidal 55 sand or gravel beaches, rocks and jetties, sheltered soft-sediment flats and mangroves, and shallow 56 subtidal coral reefs.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • Diversity and Distribution of Molluscs in the Intertidal Zone of Nglambor Beach, Gunung Kidul, Yogyakarta
    BIO Web of Conferences 33, 01002 (2021) https://doi.org/10.1051/bioconf/20213301002 ICAVESS 2021 Diversity and Distribution of Molluscs in the Intertidal Zone of Nglambor Beach, Gunung Kidul, Yogyakarta Yunita Fera Rahmawati1*, Rizka Apriani Putri1, Tatag Bagus Putra Prakarsa1, Milade Annisa Muflihaini1, and Yoga Putra Aliyani1 1Department of Biology Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta. Jl. Colombo No. 1 Karang Malang, Yogyakarta. Tel.: +62-586168 Abstract. The intertidal zone is the area between the highest and lowest tides, which represents the transition from ocean conditions to land conditions. This study aimed to determine the diversity and distribution of mollusks that exist along the intertidal zone of Nglambor Beach, between August and November 2020. Observations of all molluscs were carried out at two random stations using 10 plots measuring 1 x 1 m2 with 5 meters. A total of two classes of Mollusca (Gastropod and Bivalvia) belonging to twelve families and 19 species were found from upper to lower an intertidal zone. The upper intertidal zone was recorded to have the highest diversity and an evenness index (Shannon-Wiener diversity index: H '= 2.524 and Pielou evenness index: J' = 0.932) compared to the middle and lower zones. It can be concluding that the diversity index in the study location is categorized as medium and its evenness is high. Thais hippocastanum is the most dominant species found in the upper and middle zones, while Thais tissoti dominates in the lower zone. This research contributed to a preliminary checklist on molluscs, which will support a baseline study on the intertidal in future.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • New Record of Two Flag Pen Shells(Mollusca: Bivalvia) From
    INT. J. BIOL. BIOTECH., 14 (1): 75-78, 2017. NEW RECORD OF TWO FLAG PEN SHELLS (MOLLUSCA: BIVALVIA) FROM BANDRI BEACH, JIWANI COAST, PAKISTAN Abdul Ghani and Nuzhat Afsar* Institute of Marine Science (IMS), University of Karachi, Karachi-75270, Pakistan *Corresponding author: Email: [email protected] ABSTRACT The present work provides the first ever evidence of the presence of molluscan species, Atrina vexillum (Born, 1778) and Atrina pectinata (Linnaeus, 1767) species procured from Bandri Beach (25.0667° N, 61.8000° E), along the Jiwani coast Pakistan. Systematic and characteristic features have been provided which were used for identification. The measured sizes, 95mm and 235 mm, have been recorded for Atrina vexillum and Atrina pectinata, respectively. Keywords: Mollusca, Bivalvia, Flag Pen shells, Bandri beach, Balochistan, North Arabian Sea INTRODUCTION The coastline of Pakistan is about 990 km long, enfolds the Northern Arabian Sea. Molluscs constitute the most diverse groups among certain floral and faunal assemblages found on beaches of Pakistan along the Sindh and Makran coast in terms of species diversity, richness, abundance and local distribution (Ahmed, 1977; Ahmed et al., 1982; Barkati and Burney, 1995; Nasreen et al., 2000, Afsar and Siddiqui, 2013; Afsar et al., 2013). Bivalves belonging to the family Pinnaidae are economically valuable marine species and these are widely distributed from New Zealand, Melanesia and South Eastern Africa in the Indo-Pacific region (FAO, 1998; Butler and Keough, 1981). Reports of occurrence of such valuable species have been presented by several authors (Munguia, 2004; Butler and Keough, 1981; Rosewater, 1961) from American and Mediterranean waters. Along the Indo-Pacific region Atrina vexillium species is common and it is reported from areas including New Caledonia, Queensand, Hawaii, Japan, eastern Polynesia, Persian Gulf, Eastern Arabia, Madagascar and East Africa (Huber, 2010; Boesh et al., 1995; Barnard et al., 1993; Abbott and Dance, 1982; Morris and Purchon, 1981; Habe, 1968; Hedley, 1924).
    [Show full text]
  • Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
    ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S.
    [Show full text]
  • A Literature Review
    1 CMPA Technical Report Series No. 51 Biodiversity Conservation: A Literature Review Author Shweta Mujumdar, Sahyadri Nisarga Mitra Published by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Indo-German Biodiversity Programme (IGBP), GIZ-India, A-2/18, Safdarjung Enclave, New Delhi - 110029, India E-Mail: [email protected] 2 Web: www.giz.de October 2014 Responsible Dr. Konrad Uebelhör (Director, IGBP) Photo Credit CMPA Project, GIZ Design and Layout Commons Collective, Bangalore [email protected] Disclaimer The views expressed in this document are solely those of the authors and may not in any circumstances be regarded as stating an official position of the Ministry of Environment, Forests and Climate Change (MoEFCC), Government of India, or of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) or the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. The designation of geographical entities and presentation of material in this document do not imply the expression or opinion whatsoever on the part of MoEFCC, BMUB or GIZ concerning the legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. Reference herein to any specific organisation, consulting firm, service provider or process followed does not necessarily constitute or imply its endorsement, recommendation or favouring by MoEFCC, BMUB or GIZ. Citation S. Majumdar, S., S.N. Mitra 2014. Biodiversity
    [Show full text]
  • (Allman, 1859). Sarsia Eximia Es Una Especie De Hidroide Atecado
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Sarsia eximia (Allman, 1859). Sarsia eximia (Allman, 1859). Foto (c) Ken-ichi Ueda, algunos derechos reservados (CC BY-NC-SA) (http://www.naturalista.mx/taxa/51651-Sarsia-eximia) Sarsia eximia es una especie de hidroide atecado perteneciente a la familia Corynidae. Su distribución geográfica es muy amplia, siendo registrada en localidades costeras de todo el mundo. Se puede encontrar en una amplia gama de hábitats de la costa rocosa, pero también es abundante en algas y puede a menudo ser encontrado en las cuerdas y flotadores de trampas para langostas (GBIF, 2016). Información taxonómica Reino: Animalia Phylum: Cnidaria Clase: Hydrozoa Orden: Anthoathecata Familia: Corynidae Género: Sarsia Especie: Sarsia eximia (Allman, 1859) Nombre común: coral de fuego Sinónimo: Coryne eximia. Resultado: 0.2469 Categoría de riesgo: Medio Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Sarsia eximia (Allman, 1859). Descripción de la especie Sarsia eximia es una especie de hidroide marino colonial, formado por una hidrorriza filiforme de 184 micras de diámetro que recorre el substrato y de la que se elevan hidrocaules monosifónicos, que pueden alcanzar 2.3 cm de altura, con ramificaciones frecuentes, y ramas en un sólo plano, orientación distal y generalmente con un recurbamiento basal. Su diámetro es bastante uniforme en toda su longitud, con un perisarco espeso, liso u ondulado, y con numerosas anillaciones espaciadas. Típicamente se presentan 11-20 basales en el hidrocaule, y un número similar o superior en el inicio de las ramas, aunque asimismo existen algunas pequeñas agrupaciones irregulares en diversos puntos de la colonia, y en la totalidad de algunas ramas.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Coryne Eximia Sottoclasse Anthomedusae Allman, 1859 Ordine Capitata Famiglia Corynidae
    Identificazione e distribuzione nei mari italiani di specie non indigene Classe Hydroidomedusa Coryne eximia Sottoclasse Anthomedusae Allman, 1859 Ordine Capitata Famiglia Corynidae SINONIMI RILEVANTI Coryne tenella Syncoryne eximia Syncoryne tenella DESCRIZIONE COROLOGIA / AFFINITA’ Idrante con 4-5 tentacoli orali capitati disposti in Senza dati. un giro e 25-30 tentacoli capitati sparsi o disposti in giri lungo l'idrante; i gonozoidi originano meduse. DISTRIBUZIONE ATTUALE Medusa adulta alta circa 2-3 mm, a forma di Atlantico, Indo-Pacifico, Artico, Mediterraneo. campana; 4 canali radiali; bulbi provvisti di camera gastrodermale arrotondata rossa un ocello PRIMA SEGNALAZIONE IN MEDITERRANEO rosso su ogni bulbo marginale; manubrio Marsiglia e Villefranche-sur-Mer - Kramp 1957 cilindrico. (solo stadio di medusa). (Le segnalazioni precedenti Cnidoma: stenotele di due taglie nei polipi, sono dubbie). stenotele e desmoneme nelle meduse. COLORAZIONE PRIMA SEGNALAZIONE IN ITALIA Idranti arancio-rossi, alcuni verdastri. Ocelli delle Portofino - Puce et al. 2003 (primo record dello meduse marroni-rossastri scuri; manubrio stadio di polipo). verdastro. ORIGINE FORMULA MERISTICA Non è possibile determinarla. - VIE DI DISPERSIONE PRIMARIE TAGLIA MASSIMA Sconosciute. - STADI LARVALI VIE DI DISPERSIONE SECONDARIE - - Identificazione e distribuzione nei mari italiani di specie non indigene SPECIE SIMILI STATO DELL ’INVASIONE Specie invasiva. - MOTIVI DEL SUCCESSO CARATTERI DISTINTIVI Sconosciuti. - SPECIE IN COMPETIZIONE - HABITAT IMPATTI Polipo bentonico, medusa planctonica. - PARTICOLARI CONDIZIONI AMBIENTALI DANNI ECOLOGICI Sconosciute. - DANNI ECONOMICI BIOLOGIA - Sconosciuta. IMPORTANZA PER L ’UOMO Sconosciuta. BANCA DEI CAMPIONI - PRESENZA IN G -BANK - PROVENIENZA DEL CAMPIONE TIPOLOGIA : (MUSCOLO / ESEMPLARE INTERO / CONGELATO / FISSATO ECC ) LUOGO DI CONSERVAZIONE CODICE CAMPIONE Identificazione e distribuzione nei mari italiani di specie non indigene BIBLIOGRAFIA Kramp P.L., 1957.
    [Show full text]