Intel Atom® Processor Z3600 and Z3700 Series Datasheet, Vol 1

Total Page:16

File Type:pdf, Size:1020Kb

Intel Atom® Processor Z3600 and Z3700 Series Datasheet, Vol 1 Intel® Atom™ Processor Z3600 and Z3700 Series Datasheet December 2014 Revision 003 Document Number: 329474-003 You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or visitwww.intel.com/design/literature.htm. Intel, Intel Atom and the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. See Trademarks on intel.com for full list of Intel trademarks. © 2014 Intel Corporation. 2 Datasheet Contents 1Introduction............................................................................................................ 16 1.1 Terminology ..................................................................................................... 19 1.2 Feature Overview .............................................................................................. 20 1.2.1 Type 4 SoC............................................................................................ 20 1.2.2 Type 3 SoC............................................................................................ 24 1.3 SKU Information ............................................................................................... 29 1.4 Difference between SoC SKUs ............................................................................. 30 1.5 References ....................................................................................................... 30 2Physical Interfaces.................................................................................................. 32 2.1 Pin States Through Reset ................................................................................... 34 2.2 System Memory Controller Interface Signals ......................................................... 35 2.3 USB 2.0 Host (EHCI/xHCI) Interface Signals ......................................................... 37 2.4 USB 2.0 HSIC Interface Signals ........................................................................... 37 2.5 USB 3.0 (xHCI) Host Interface Signals ................................................................. 37 2.6 USB 2.0 Device (ULPI) Interface Signals ............................................................... 38 2.7 USB 3.0 Device Interface Signals......................................................................... 38 2.8 Integrated Clock Interface Signals ....................................................................... 39 2.9 Display - Digital Display Interface (DDI) Signals .................................................... 39 2.10 MIPI DSI Interface Signals.................................................................................. 41 2.11 MIPI Camera Serial Interface (CSI) & ISP Interface Signals..................................... 41 2.12 Low Power Engine (LPE) for Audio (I2S) Interface Signals ....................................... 42 2.13 Storage Control Cluster (eMMC, SDIO, SD) Interface Signals................................... 42 2.14 SIO - High Speed UART Interface Signals ............................................................. 43 2.15 SIO - I2C Interface Signals ................................................................................. 44 2.16 SIO - Serial Peripheral Interface (SPI) Signals ....................................................... 44 2.17 PCU - iLB - Real Time Clock (RTC) Interface Signals ............................................... 45 2.18 PCU - iLB - Low Pin Count (LPC) Bridge Interface Signals ........................................ 45 2.19 PCU - Serial Peripheral Interface (SPI) Signals....................................................... 45 2.20 PCU - Power Management Controller (PMC) Interface Signals .................................. 46 2.21 JTAG and Debug Interface Signals ....................................................................... 47 2.22 Miscellaneous Signals......................................................................................... 47 2.23 GPIO Signals .................................................................................................... 47 2.24 Power And Ground Pins ...................................................................................... 52 2.25 Hardware Straps ............................................................................................... 54 2.26 Configurable IO: GPIO Muxing............................................................................. 54 3 Processor Core ........................................................................................................ 78 3.1 Features .......................................................................................................... 78 3.1.1 Intel® Virtualization Technology (Intel® VT)............................................... 79 3.1.2 Security and Cryptography Technologies ................................................... 80 3.1.3 Power Aware Interrupt Routing ................................................................ 81 3.1.4 Intel® Burst Technology .......................................................................... 81 3.2 Platform Identification and CPUID........................................................................ 82 3.3 References ....................................................................................................... 83 4 System Memory Controller....................................................................................... 84 4.1 Signal Descriptions ............................................................................................ 84 4.2 Features .......................................................................................................... 88 4.2.1 System Memory Technology Supported ..................................................... 88 5 Graphics, Video and Display..................................................................................... 90 Datasheet 3 5.1 Features...........................................................................................................90 5.2 SoC Graphics Display .........................................................................................91 5.2.1 Primary Planes A and B ...........................................................................91 5.2.2 Video Sprite Planes A, B, C and D .............................................................91 5.2.3 Cursors A and B .....................................................................................91 5.3 Display Pipes.....................................................................................................91 5.4 Display Physical Interfaces..................................................................................92 5.4.1 Digital Display Interfaces .........................................................................92 5.5 References........................................................................................................99 5.6 3D Graphics and Video .......................................................................................99 5.7 Features......................................................................................................... 100 5.7.1 3D Engine Execution Units ..................................................................... 101 5.7.2 3D Pipeline .......................................................................................... 101 5.7.3 Video Engine........................................................................................ 102 5.8 VED (Video Encode/Decode).............................................................................. 102 5.8.1 Features.............................................................................................. 103 6 MIPI-Camera Serial Interface (CSI) and ISP.......................................................... 104 6.1 Signal Descriptions .......................................................................................... 104 6.2 Features......................................................................................................... 106 6.2.1 Imaging Capabilities.............................................................................. 106 6.2.2 Simultaneous Acquisition ....................................................................... 107 6.2.3 Primary Camera Still Image Resolution .................................................... 107 6.2.4 Burst Mode Support .............................................................................. 108 6.2.5 Continuous Mode Capture ...................................................................... 108 6.2.6 Secondary Camera Still Image Resolution ...............................................
Recommended publications
  • Wind River Vxworks Platforms 3.8
    Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................
    [Show full text]
  • Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
    Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-037 MAY 2019 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica- tions. Current characterized errata are available on request. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1- 800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Intel, the Intel logo, Intel Deep Learning Boost, Intel DL Boost, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
    [Show full text]
  • Intel® Atom™ Processor E6x5c Series-Based Platform for Embedded Computing
    PlAtfOrm brief Intel® Atom™ Processor E6x5C Series Embedded Computing Intel® Atom™ Processor E6x5C Series-Based Platform for Embedded Computing Platform Overview Available with industrial and commercial The Intel® Atom™ processor E6x5C series temperature ranges, this processor series delivers, in a single package, the benefits of provides embedded lifecycle support and the Intel® Atom™ processor E6xx combined is supported by the broad Intel® archi- with a Field-Programmable Gate Array tecture ecosystem as well as standard (FPGA) from Altera. This series offers Altera development tools. Additionally, a exceptional flexibility to incorporate a compatible, dedicated Power Management wide range of standard and user-defined Integrated Circuit (PMIC) solution may be I/O interfaces, high-speed connectivity, obtained from leading PMIC suppliers to memory interfaces, and process accelera- help minimize platform part count and tion to meet the requirements of a variety reduce bill of material costs and design of embedded applications in industrial, medi- complexity. Options include separate PMIC cal, communication, vision systems, voice and clock generator chips (available from over Internet protocol (VoIP), military, high- ROHM Co., Ltd.) or a single-chip solution performance programmable logic control- that integrates the voltage regulator and lers (PLCs) and embedded computers. clock generator (available from Dialog Semiconductor). The Intel Atom processor E6x5C series is a multi-chip, single-package device that Product Highlights reduces board footprint, lowers compo- • Single-package: A compact 37.5 x nent count, and simplifies inventory 37.5 mm, 0.8 mm ball pitch, multi-chip control and manufacturing. This compact device internally connects the Intel Atom design offers single-vendor support while processor E6xx with a user-programma- providing Intel Atom processors for ble FPGA.
    [Show full text]
  • Avionics Hardware Issues 2010/11/19 Chih-Hao Sun Avionics Software--Hardware Issue -History
    Avionics Hardware Issues 2010/11/19 Chih-hao Sun Avionics Software--Hardware Issue -History -HW Concepts History -FPGA vs ASIC The Gyroscope, the first auto-pilot device, was -Issues on • Avionics Computer introduced a decade after the Wright Brothers -Avionics (1910s) Computer -PowerPC • holds the plane level automatically -Examples -Energy Issue • is connected to computers for missions(B-17 and - Certification B-29 bombers) and Verification • German V-2 rocket(WWII) used the earliest automatic computer control system (automatic gyro control) • contains two free gyroscopes (a horizontal and a vertical) 2 Avionics Software--Hardware Issue -History -HW Concepts History -FPGA vs ASIC Avro Canada CF-105 Arrow fighter (1958) first used -Issues on • Avionics Computer analog computer to improve flyability -Avionics Computer is used to reduce tendency to yaw back and forth -PowerPC • -Examples F-16 (1970s) was the first operational jet fighter to use a -Energy Issue • fully-automatic analog flight control system (FLCS) - Certification and Verification • the rudder pedals and joysticks are connected to “Fly-by-wire” control system, and the system adjusts controls to maintain planes • contains three computers (for redundancy) 3 Avionics Software--Hardware Issue -History -HW Concepts History -FPGA vs ASIC NASA modified Navy F-8 with digital fly-by wire system in -Issues on • Avionics Computer 1972. -Avionics Computer • MD-11(1970s) was the first commercial aircraft to adopt -PowerPC computer-assisted flight control -Examples -Energy Issue The Airbus A320 series, late 1980s, used the first fully-digital - • Certification fly-by-wire controls in a commercial airliner and Verification • incorporates “flight envelope protection” • calculates that flight envelope (and adds a margin of safety) and uses this information to stop pilots from making aircraft outside that flight envelope.
    [Show full text]
  • Intel Atom® Processor C2000 Product Family for Microservers
    Intel® Atom™ Processor C2000 Product Family for Microservers PRODUCT BRIEF Maximize Efficiency for Your Lightweight Scale-Out Workloads Extreme Density and Energy-Efficiency for Low-End, Scale-Out Workloads With a need to rapidly deliver new services, cope with massive data growth, and contain costs, cloud service providers and hosters seek increasingly efficient ways to handle the demands on their infrastructure. Today’s servers based on Intel® Xeon® processors provide leadership performance and performance per watt with the flexibility to handle a wide range of workloads and peak demands. 2nd generation 64-bit However, certain lightweight, scale-out workloads—such as basic dedicated hosting, low-end static Intel® Atom™ Processor web serving, and simple content delivery can sometimes be hosted more efficiently on larger C2000 Product Family numbers of smaller servers built for extreme power efficiency. for microservers To address this need, Intel worked with a broad giving you the flexibility to right-size your infra- • Up to 7x higher7 perfor- ecosystem of leading server manufacturers to structure without limiting software mobility and mance, up to 6x better8 develop and deliver a variety of extreme low-power interoperability as your applications evolve. systems to support an emerging server category— performance/watt Optimized Platform Support microservers. With up to a 1,000 nodes1 per Intel provides complete microserver platform 9 rack and shared power, cooling, and networking • 6-20 watt TDP solutions that simplify implementation, improve resources, microservers can help you improve data overall efficiency and enable higher node density. • Up to 1000+ server center efficiency by right-sizing infrastructure for New innovations include: 10 relatively light processing requirements.
    [Show full text]
  • Debuggers, Programmers and Erasers Products May Be Rohs Compliant
    Debuggers, Programmers and Erasers Products may be RoHS compliant. Check mouser.com for RoHS status. USB2Wiggler Features: DEVELOPMENT PROGRAMMERS • Universal Serial Bus interface for JTAG and BDM debugging TopMaxII Programmer • Faster than the classic parallel port Wiggler • Fully compatible with all Macraigor Systems software Features: • Operates up to Hi-Speed USB rates (480Mb/s) • High speed device programmer and TTL/LOGIC/DRAM tester • One side interfaces to USB port of host IBM compatible PC, other • PC driven: USB 2.0 interface side connects to OCD (On-Chip Debug) port of target system • Device libraries > 18000 • Port may be JTAG, E-JTAG, OnCE, COP, BDM, or any of several • Standard 48-pin DIL ZIF socket other types of connections • Supported devices: EPROM, EEPROM, FLASH (NOR/NAND) Programmers memory, PLD, FPGA, Serial PROM, Parallel PROM, CMOS USB2Demon Features: PROM, PIC and microcontrollers • Interfaces to USB 1.1 or USB 2.0 port of host PC on one side, other • B/P/V takes 65 sec. for 64Mbit flash memory • External start key for auto programming mode side connects to OCD (On-Chip Debug) port on target system • All socket adapters are available in stock (USA): PLCC, SOP, • Win 95/98/NT/2000/XP/Vista/Windows 7 • Simultaneously debugs up to 255 devices on a single scan chain SOIC, QFP, TSOP, SON, BGA, TSSOP, and TSOPII • Approved by CE • Supports configurable JTAG/BDM clock rates up to 20MHz • Supported low-voltages: 1.8/2.0/2.7/3.0/3.3/5.0 volt • Made in USA • Compatible with Windows and Linux hosts • Built-in AC (110-240) power supply • Free software update for lifetime • Supported versions of Linux: Red Hat 7.2-9 and Fedora Core 2 For quantities greater than listed, call for quote.
    [Show full text]
  • Usersguide Ghana-EB-1985WU.Pdf
    User's Guide Contents 2 Notations Used in This Guide Connecting to a USB Device or Camera.............................28 Disconnecting a USB Device or Camera.............................28 Connecting to a Document Camera.................................28 Connecting to External Output Devices..............................28 Introduction to Your Projector Connecting to an External Computer Monitor........................29 Connecting to External Speakers.................................29 Projector Features.......................................... 9 Installing Batteries in the Remote Control................... 31 Quick and Easy Setup............................................9 Flexible Connectivity............................................9 Remote Control Operation.......................................31 Connect with Computer.......................................10 Opening the Lens Cover . ............................. 33 Connect with Mobile Devices...................................11 Projector Parts and Functions ............................... 12 Projector Parts - Front..........................................12 Using Basic Projector Features Projector Parts - Rear...........................................13 Projector Parts - Base...........................................14 Turning On the Projector ................................... 35 Projector Parts - Control Panel.....................................15 Turning Off the Projector ................................... 37 Projector Parts - Remote Control...................................16
    [Show full text]
  • Intel® Industrial Iot Workshop Security for Industrial Platforms
    Intel® Industrial IoT workshop Security for industrial platforms Gopi K. Agrawal Security Architect IOTG Technical Sales & Marketing Intel Corporation Legal © 2018 Intel Corporation No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure.
    [Show full text]
  • Telecommunication Switching Networks
    TELECOMMUNICATION SWITCHING AND NETWORKS TElECOMMUNICATION SWITCHING AND NffiWRKS THIS PAGE IS BLANK Copyright © 2006, 2005 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (10) : 81-224-2349-3 ISBN (13) : 978-81-224-2349-5 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com PREFACE This text, ‘Telecommunication Switching and Networks’ is intended to serve as a one- semester text for undergraduate course of Information Technology, Electronics and Communi- cation Engineering, and Telecommunication Engineering. This book provides in depth knowl- edge on telecommunication switching and good background for advanced studies in communi- cation networks. The entire subject is dealt with conceptual treatment and the analytical or mathematical approach is made only to some extent. For best understanding, more diagrams (202) and tables (35) are introduced wherever necessary in each chapter. The telecommunication switching is the fast growing field and enormous research and development are undertaken by various organizations and firms. The communication networks have unlimited research potentials. Both telecommunication switching and communication networks develop new techniques and technologies everyday. This book provides complete fun- damentals of all the topics it has focused. However, a candidate pursuing postgraduate course, doing research in these areas and the employees of telecom organizations should be in constant touch with latest technologies.
    [Show full text]
  • CS 6290 Chapter 1
    Spring 2011 Prof. Hyesoon Kim Xbox 360 System Architecture, „Anderews, Baker • 3 CPU cores – 4-way SIMD vector units – 8-way 1MB L2 cache (3.2 GHz) – 2 way SMT • 48 unified shaders • 3D graphics units • 512-Mbyte DRAM main memory • FSB (Front-side bus): 5.4 Gbps/pin/s (16 pins) • 10.8 Gbyte/s read and write • Xbox 360: Big endian • Windows: Little endian http://msdn.microsoft.com/en-us/library/cc308005(VS.85).aspx • L2 cache : – Greedy allocation algorithm – Different workloads have different working set sizes • 2-way 32 Kbyte L1 I-cache • 4-way 32 Kbyte L1 data cache • Write through, no write allocation • Cache block size :128B (high spatial locality) • 2-way SMT, • 2 insts/cycle, • In-order issue • Separate vector/scalar issue queue (VIQ) Vector Vector Execution Unit Instructions Scalar Scalar Execution Unit • First game console by Microsoft, released in 2001, $299 Glorified PC – 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics) – Ran modified version of Windows OS – ~25 million sold • XBox 360 – Second generation, released in 2005, $299-$399 – All-new custom hardware – 3.2 Ghz PowerPC IBM processor (custom design for XBox 360) – ATI graphics chip (custom design for XBox 360) – 34+ million sold (as of 2009) • Design principles of XBox 360 [Andrews & Baker] - Value for 5-7 years -!ig performance increase over last generation - Support anti-aliased high-definition video (720*1280*4 @ 30+ fps) - extremely high pixel fill rate (goal: 100+ million pixels/s) - Flexible to suit dynamic range of games - balance hardware, homogenous resources - Programmability (easy to program) Slide is from http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf • Code name of Xbox 360‟s core • Shared cell (playstation processor) ‟s design philosophy.
    [Show full text]
  • Intel Atom® Processor C3000 Series for Embedded and Iot Applications: Product Brief
    Product brief Internet of Things Intel Atom® Processor C3000 Series Expanding Intelligence and Flexibility at the Edge Scalable, dense-compute SoC for demanding IoT workloads From the factory foor to the energy grid, airplanes to supply chains, the sensors, controls, gateways, and other connected devices of Internet of Things (IoT) are driving the next industrial revolution. As IoT continues its explosive growth, the need for intelligent devices for more specialized applications is also growing exponentially. Industrial, energy, aerospace, robotics, public sector, and other customers with demanding IoT workloads want new ways to easily extract value from their data, reduce their time to market, and innovate connected technologies quickly and efciently. Moreover, they increasingly require reliable IoT solutions that bring maximum performance and greater capabilities to an ever-expanding array of challenging locations and operating conditions. The Intel Atom® processor C3000 series extends low-power Intel® architecture into new segments and accelerates IoT innovation across a wide range of demanding environments and use cases. With high performance per watt, low thermal design power (TDP) of 9.5W, and up to 20 confgurable high-speed input/output (HSIO) lanes, and pin-to-pin compatibility, this new system-on-a-chip (SoC) family delivers next-generation, multicore performance and scalability for a broad variety of low-power, high-density, and fanless designs. Multicore scalability With the Intel Atom processor C3000 series, customers are able to scale performance and achieve workload consolidation in situations and use cases that uP to require very low power, high density, and high I/O integration. Designed in an FCBGA 34mm x 28mm compact form factor, this SoC-based CPU is manufactured on Intel’s optimized 14nm process technology, available from 2 to 12 cores from 2.3X 1.6 to 2.0 GHz, and includes up to 256 GB DDR4 2133 MHz ECC (SODIMM, UDIMM, better PerforMANce or RDIMM) of addressable memory.
    [Show full text]
  • Intel Atom® P5900 Processors for 5G Network Edge Acceleration
    PRODUCT BRIEF | Intel Atom® P5900 Processors ADVANCED PERFORMANCE FOR 5G WIRELESS BASE STATIONS As the radio access network (RAN) infrastructure of wireless carriers evolves to meet the intense demands of 5G, additional compute is required at the edge of the network. Careful consideration is critical across the board—from overarching design down to the selection of key components in base transceiver station equipment—for 5G networks to reliably meet the demands of next-generation service opportunities with lower latencies, higher bandwidth, and increased network capacity. RAN INFRASTRUCTURE EVOLUTION Intel has never had a stronger or more comprehensive portfolio of solutions to enable the RAN. From Intel® Xeon® Scalable processors to Intel Atom® processors, FPGAs, ASICS, and more, Intel continues to deliver cutting-edge hardware for 5G infrastructure. Even so, it’s our significant investments in software that enable service providers to make the most of our hardware, from drivers and operating systems up through entire production-quality software stacks. This interconnected platform of hardware and software allows service providers to get to market quickly while still offering the flexibility needed to address various deployment scenarios. Furthermore, with the increasing adoption of innovations found in cloud deployments, service providers are realizing the benefits of extending a platform combining common cloud software with Intel® architecture-based hardware from the core to the edge. A common software ecosystem for platform virtualization and customer applications—using a common Intel instruction set architecture across the infrastructure—enables faster deployment of new software and features while also making new service offerings and revenue models possible. PRODUCT BRIEF | Intel Atom® P5900 Processors AN EXCITING NEW CLASS OF EDGE PROCESSORS Intel Atom P5900 processors are the first of an all-new class of high-throughput, low-latency Intel Atom P processors for high-density network edge and security solutions.
    [Show full text]