Hydrol. Earth Syst. Sci., 18, 5181–5200, 2014 www.hydrol-earth-syst-sci.net/18/5181/2014/ doi:10.5194/hess-18-5181-2014 © Author(s) 2014. CC Attribution 3.0 License. Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013 S. J. Marshall Department of Geography, University of Calgary, 2500 University Dr NW, Calgary AB, T2N 1N4, Canada Correspondence to: S. J. Marshall (
[email protected]) Received: 14 June 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 21 July 2014 Revised: 18 October 2014 – Accepted: 1 November 2014 – Published: 12 December 2014 Abstract. Observations of high-elevation meteorological 1 Introduction conditions, glacier mass balance, and glacier run-off are sparse in western Canada and the Canadian Rocky Moun- Meltwater run-off from glacierized catchments is an inter- tains, leading to uncertainty about the importance of glaciers esting and poorly understood water resource. Glaciers pro- to regional water resources. This needs to be quantified so vide a source of interannual stability in streamflow, supple- that the impacts of ongoing glacier recession can be eval- menting snow melt, and rainfall (e.g. Fountain and Tangborn, uated with respect to alpine ecology, hydroelectric opera- 1985). This is particularly significant in warm, dry years (i.e. tions, and water resource management. In this manuscript drought conditions) when ice melt from glaciers provides the the seasonal evolution of glacier run-off is assessed for an main source of surface run-off once seasonal snow is de- alpine watershed on the continental divide in the Canadian pleted (e.g. Hopkinson and Young, 1998).