Light Reproduction of Pilobolus

Total Page:16

File Type:pdf, Size:1020Kb

Light Reproduction of Pilobolus mentation liquors were a rich source of a material (to which they gave the somewhat inappropriate name "copro- gen") which was very active in promot- ing the growth of Pilobolus. Third, Light and the Asexual Neilands (4) discovered a family of iron-containing compounds, the fer- richromes, which were also very active Reproduction of Pilobolus in promoting the growth of Pilobolus. Now, hemin, coprogen, and the fer- Responses to light play an role in the richromes have one property in com- important mon: they all contain iron in chelated development and reproduction of this fungus. form. It appears, therefore, that one distinctive nutritional requirement of Pilobolus is that it be supplied with Robert M. Page iron in specially chelated form. Al- though the identity of the material in dung remains unknown, it seems proba- ble, from the work of Lyr (5), that Pilobolus, a fungus assigned to the mals. For example, I have isolated bacteria in the dung are a major source order Mucorales, differs from all other strains- from such exotic sources as of this growth factor. It is possible, members of this order of terrestrial caribou dung collected near Point therefore, that this factor is similar to Phycomycetes in that it discharges its Barrow, Alaska, and wallaby dung col- coprogen, or that the two are identical. sporangia explosively. Because of this lected at Wilson's Promontory at the In addition to their requirement for spectacular method of spore dispersal southernmost tip of Australia (1). specially chelated iron, some species Pilobolus has attracted the attention of One question which arises immedi- of Pilobolus have a near-requirement biologists for almost three centuries, ately is, Why does Pilobolus grow on for fatty acids. Growth is very poor in but the genus is of current interest not dung? To be sure, one species, P. media containing carbohydrates as a only because of the dramatic way in oedipus, has been reported to grow on source of carbon, but growth is vigorous which it is adapted to its environment decomposing algae along river and canal in media containing appropriate concen- but also because it has attributes which banks, but all of the other species have trations of sodium acetate. All of the make it of interest in the study of been found only on dung. Is the genus species of Pilobolus tested have grown fundamental biological problems. restricted to this habitat only by the on synthetic media containing hemin, All of the species of Pilobolus except mechanics of its spore dispersal, or are acetate, a nitrogen source, and in- one occur on the dung of herbivorous nutritional factors involved as well? A organic salts (2). By far the most animals. The mycelium grows beneath partial answer to this question may be active nitrogen source is ammonia the surface of the substratum, and found in the results of nutritional (ammonium ion). Both vegetative after a few days it produces a crop of studies. growth and reproduction are greatly sporangiophores. When each sporan- stimulated by ammonia in certain con- gium reaches maturity it is shot off centrations (6). forcibly, and if, at the end of its tra- Nutritional Requirements It appears from the results of nutri- jectory, it strikes a blade of grass, the tional studies that Pilobolus is bound sporangium adheres to it. If a grazing Early attempts to grow Pilobolus on to its habitat as much by its nutritional animal eats a blade of grass with ad- synthetic media of known chemical requirements as by its method of spore herent sporangia, the thousands of composition were unsuccessful. The dispersal, and that its nutrition is as spores contained within each sporan- fungus grew well only on dung or on specialized as its morphology. More- gium pass unharmed through its di- aqueous extracts of dung. Within the over, from a practical point of view gestive tract and emerge with the dung, past decade, however, investigations in the results of nutritional studies have in which they germinate to repeat this several laboratories have provided some been useful because they have made it asexual reproductive cycle. Pilobolus information on the nutritional require- possible to grow the fungus under much also reproduces sexually in a manner ments of some members of the genus. more rigidly controlled conditions than similar to that of other Mucorales. First, through fractionation of aqueous is possible on a dung medium. Also, the Pilobolus is widely distributed, and extracts of cow dung, it was found that growth and development of the fungus although it is not often observed in the material in dung which was re- can be observed more conveniently on the field because its sporangiophores quired by Pilobolus was heat-stable synthetic media than on natural sub- are ephemeral, it appears frequently and soluble in water but not in fat strata. on samples of dung brought to the solvents. It was not adsorbed by anionic laboratory and kept under moist con- or cationic exchange resins, but it was ditions for a few days (Fig. 1). The strongly absorbed by charcoal and cer- Growth and Development genus has been reported from many tain other nonspecific adsorbants. The parts of the world, and it occurs on the growth-promoting activity of this factor On transparent synthetic agar media dung of many kinds of herbivorous ani- can be imitated by hemin, but relatively it is possible to follow the growth of high concentrations (10 mg/ml) are the mycelium and the development of The author is associate professor in the de- required (2). Second, workers at the the asexual structures of partment of biological sciences, Stanford Uni- reproductive versity, Stanford, Calif. Lederle Laboratories (3) found that fer- Pilobolus in detail (Fig. 2). The my- 1238 SCIENCE, VOL. 138 sporangium, which is later separated from the rest of the sporangiophore by a crosswall. Sooner or later the upper part of the sporangiophore swells to form a conspicuous subsporangial swelling or vesicle, and the wall of the sporangium becomes jet black. In the meantime the contents of the sporan- gium cleave to form a large number of multinucleate spores. As the sporan- gium reaches maturity its wall separates at the base, so that the gelatinous ma- terial surrounding the spores is ex- posed. Finally, the wall of the sub- Fig. 1. Sporangiophores of Pilobolus sp. on cow dung. (About X 5) sporangial vesicle ruptures suddenly just below the sporangium. The sporan- gium is shot off, propelled by the liquid celium, which grows beneath the sur- conditions, the mycelium begins to in the sporangiophore and the empty face of the medium, may be some- form trophocysts, which are first recog- sporangiophore is thrown flat on the what restricted, as in Pilobolus crystal- nizable as swollen regions along certain medium by the recoil. linus Fries and its relatives, or it may hyphae. These swellings enlarge as The force with which the sporangia spread rapidly to fill the medium in a protoplasm flows into them, and finally are discharged is impressive. Sporangia petri dish in a few days, as is the case each trophocyst is completed by the which strike the lid of a petri dish with P. kleinii van Tiegh or P. sphaero- formation of crosswalls which isolate it make a clearly audible "plink," and sporus Palla. The mycelium is coeno- from the parent hypha. Later, a stout those whose progress is not interrupted cytic; the hyphae are devoid of cross- hypha, the sporangiophore, grows from are thrown for remarkable distances. walls except for those which delimit each trophocyst, increases in length, All records for altitude and distance are reproductive structures or wall off small emerges from the medium, and con- held by sporangia reported by Buller branch hyphae from which the pro- tinues to elongate in the air. After a (7); he found that large sporangia toplasm has been withdrawn. Sooner or time the sporangiophore stops elongat- of Pilobolus kleinii and P. longipes are later, depending on the species and ing and its tip swells to form the shot to a height of 6 feet 0.5 inch. .... : - . 0 :. :-, C) 0 Fig. 2. Schematic drawing (based on P. crystallinus) showing the development of asexual reproductive structures of Pilobolus. Trophocysts and sporangia are represented as developing in clockwise sequence on hyphae emanating from a sporangium. 14 DECEMBER 1962 1239 When sporangiophores were aimed at form sporangia in the dark, P. sphaero- a 45-degree angle above the horizontal, sporus is more suitable for studies on the maximum range was 8 feet 0.5 inch periodicity, and it has been shown to for P. kleinii and 8 feet 7.5 inches for have an endogenous rhythm which is P. longipes. susceptible of entrainment (11). From the maximum height to which The phototropic responses of Pilobo- sporangia are shot, Buller calculated lus have been studied far more inten- that the muzzle velocity would be 19.6 sively than its morphogenic responses feet per second if air resistance is to light (12). It is well known that neglected. Pringsheim and Czurda (8) the fungus discharges its sporangia attempted to measure the muzzle veloc- toward a source of light, and the ity directly by allowing sporangia to accuracy with which the sporangio- pass through holes in a rotating disk phores direct the sporangia at an illu- and strike a second disk rotating on the minated target has been demonstrated same shaft. From the results, they cal- by many workers. To illustrate this culated that the muzzle velocity was Fig. 3. Sporangia of Pilobolus kleinii ad- accuracy, a target of translucent paper approximately 14 meters per second. hering to a paper target of which the was attached to the underside of the In order to avoid some of the errors center was illuminated (see text).
Recommended publications
  • Characterization of Two Undescribed Mucoralean Species with Specific
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2018 doi:10.20944/preprints201803.0204.v1 1 Article 2 Characterization of Two Undescribed Mucoralean 3 Species with Specific Habitats in Korea 4 Seo Hee Lee, Thuong T. T. Nguyen and Hyang Burm Lee* 5 Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, 6 Chonnam National University, Gwangju 61186, Korea; [email protected] (S.H.L.); 7 [email protected] (T.T.T.N.) 8 * Correspondence: [email protected]; Tel.: +82-(0)62-530-2136 9 10 Abstract: The order Mucorales, the largest in number of species within the Mucoromycotina, 11 comprises typically fast-growing saprotrophic fungi. During a study of the fungal diversity of 12 undiscovered taxa in Korea, two mucoralean strains, CNUFC-GWD3-9 and CNUFC-EGF1-4, were 13 isolated from specific habitats including freshwater and fecal samples, respectively, in Korea. The 14 strains were analyzed both for morphology and phylogeny based on the internal transcribed 15 spacer (ITS) and large subunit (LSU) of 28S ribosomal DNA regions. On the basis of their 16 morphological characteristics and sequence analyses, isolates CNUFC-GWD3-9 and CNUFC- 17 EGF1-4 were confirmed to be Gilbertella persicaria and Pilobolus crystallinus, respectively.To the 18 best of our knowledge, there are no published literature records of these two genera in Korea. 19 Keywords: Gilbertella persicaria; Pilobolus crystallinus; mucoralean fungi; phylogeny; morphology; 20 undiscovered taxa 21 22 1. Introduction 23 Previously, taxa of the former phylum Zygomycota were distributed among the phylum 24 Glomeromycota and four subphyla incertae sedis, including Mucoromycotina, Kickxellomycotina, 25 Zoopagomycotina, and Entomophthoromycotina [1].
    [Show full text]
  • <I>Mucorales</I>
    Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
    [Show full text]
  • THE Fungus FILES 31 REPRODUCTION & DEVELOPMENT
    Reproduction and Development SPORES AND SO MUCH MORE! At any given time, the air we breathe is filled with the spores of many different types of fungi. They form a large proportion of the “flecks” that are seen when direct sunlight shines into a room. They are also remarkably small; 1800 spores could fit lined up on a piece of thread 1 cm long. Fungi typically release extremely high numbers of spores at a time as most of them will not germinate due to landing on unfavourable habitats, being eaten by invertebrates, or simply crowded out by intense competition. A mid-sized gilled mushroom will release up to 20 billion spores over 4-6 days at a rate of 100 million spores per hour. One specimen of the common bracket fungus (Ganoderma applanatum) can produce 350 000 spores per second which means 30 billion spores a day and 4500 billion in one season. Giant puffballs can release a number of spores that number into the trillions. Spores are dispersed via wind, rain, water currents, insects, birds and animals and by people on clothing. Spores contain little or no food so it is essential they land on a viable food source. They can also remain dormant for up to 20 years waiting for an opportune moment to germinate. WHAT ABOUT LIGHT? Though fungi do not need light for food production, fruiting bodies generally grow toward a source of light. Light levels can affect the release of spores; some fungi release spores in the absence of light whereas others (such as the spore throwing Pilobolus) release during the presence of light.
    [Show full text]
  • Morphological and Molecular Characterization of Ascobolus and Pilobolus Fungi in Wild Herbivore Dung in Nairobi National Park Mi
    MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF ASCOBOLUS AND PILOBOLUS FUNGI IN WILD HERBIVORE DUNG IN NAIROBI NATIONAL PARK MIYUNGA ANTOINETTE ALUOCH A Research Thesis Submitted to the Graduate School in Partial Fulfilment for the Requirements of the Award of Master of Science Degree in Biochemistry of Egerton University EGERTON UNIVERSITY NOVEMBER, 2015 DECLARATION AND RECOMMENDATION Declaration This thesis is my original work and has not been submitted or presented for examination in any institution Miyunga Antoinette Aluoch SM14/3263/12 Signature..................................................... Date………………………………….. Recommendation This thesis has been submitted for examination with our approval as supervisors Dr. Meshack Obonyo Senior Lecturer Department of Biochemistry and Molecular Biology Egerton University Signature..................................................... Date………………………………….. Dr. Daniel Okun Lecturer Department of Biochemistry and Biotechnology Kenyatta University Signature..................................................... Date………………………………….. ii COPYRIGHT ©2015 Miyunga A Aluoch No parts of this work may be reproduced, stored in a retrieval system or transmitted by any means, mechanical photocopying and electronic process, recording or otherwise copied for public or private use without the prior written permission from Egerton University. All rights reserved. iii DEDICATION This thesis is dedicated to my family for their love and support always. iv ACKNOWLEDGEMENT I thank my supervisors Dr. Meshack Obonyo of Department
    [Show full text]
  • THE Fungus FILES BIOLOGY & CLASSIFICATION
    REPRODUCTION & DEVELOPMENT The Fung from the Dung Flipbook OBJECTIVE Activity 2.3 • To illustrate how one fungus disperses its spores BACKGROUND INFORMATION GRADES Fungi have developed many bizarre and interesting adaptations to K-6 (Care partners for K-2) disperse their spores. The hat thrower fungus, Pilobolus, is especially intriguing. This mushroom is coprophilic which means it likes to TYPE OF ACTIVITY live in dung. Pilobolus has evolved a way to shoot its spores onto Flipbook the grass where it is eaten by cattle. Its “shotgun” is a stalk swollen with cell sap, with a black mass of spores on the top. Below, the MATERIALS swollen tip is a light-sensitive area. The light sensing region affects • letter sized paper the growth of Pilobolus by causing it to orient toward the sun. As (cardstock would be ideal) the fungus matures, water pressure builds in the stalk until the tip • pencil crayons, crayons, or explodes, launching the spores into the daylight at speeds up to markers 50km/hr and for distances up to 2.5m! Shooting the spores into the • copies of page 45-46 for daylight gives them a better chance of landing in a sunny place each student where grass is growing. When the grass is eaten by the cattle, the • scissors tough spores pass through their digestive system and begin to grow • heavy duty stapler in a pile of dung where the cycle begins again. • copies of the poem, “Pilobolus, the Fung in the TEACHER INSTRUCTIONS Dung” from Tom Volk’s 1. Make copies of pages 45-46 and handout to each student.
    [Show full text]
  • Pilobolusspecies Found on Herbivore Dung from the São Paulo
    Acta bot. bras. 22(3): 614-620. 2008 Pilobolus species found on herbivore dung from the São Paulo Zoological Park, Brazil Aírton Viriato1 Received: May 2, 2007. Accepted: September 4, 2007 RESUMO – (Espécies de Pilobolus encontradas em fezes de herbívoros do Parque Zoológico de São Paulo, Brasil). Para o estudo de espécies de Pilobolus, foram coletadas 168 amostras de fezes de animais herbívoros no Parque Zoológico da cidade de São Paulo. Dez espécies foram verificadas, ilustradas e descritas e uma chave de identificação é apresentada. Palavras-chave: fungos coprófilos, Mucorales, Zygomycota ABSTRACT – (Pilobolus species found on herbivore dung from the São Paulo Zoological Park, Brazil). A study of Pilobolus species from 168 dung samples of various herbivoresous animals, collected in the São Paulo Zoological Park, was carried out. Ten species were found, illustrated, described, and a key for their identification is provided. Key words: coprophilous fungi, Mucorales, Zygomycota Introduction other at the base of the subsporangial vesicle. The orange carotenoid pigments act as light sensors which Pilobolus is a saprotrophic genus belonging to the are lined up with each other by the expanded Mucorales (Zygomycota), frequently found in subsporangial vesicle acting as a lens, so that the herbivorous animals feces (Alexopoulos et al. 1996). sporangium is always aimed at the brightest light. The The genus is characterized by coprophilous habit, sporangia are black, sub-hemispherical and have positive phototropism and method of spore dispersal. resistant walls. The columellae are generally smooth In the dispersal process, the mature sporangium is and long-elliptical, and sometimes mammiform. The thrown more than 2 meters by dehiscence of the spores are spherical to ellipsoid, and generally smooth mucilage found at the junction of the columella with walled, hyaline or with carotenoid pigments.
    [Show full text]
  • 1 Evaluating the Explosive Spore Discharge Mechanism of Pilobolus
    Evaluating the explosive spore discharge mechanism of Pilobolus Crystallinus using mechanical measurements and mathematical modeling John Tuthill May 9, 2005 Biomechanics Professor Rachel Merz Abstract The coprophilous Zygomycete Pilobolus uses osmotic turgor pressure as a means of explosive spore discharge, shooting its sporangium up to several meters away from the sporangiophore. This study attempts to clarify the sporangial discharge model by offering the first mechanical measurements of the internal turgor pressure of Pilobolus. In order to account for the forces included within the hypothesized shooting mechanism, a mathematical model is used to model the sporangial projectile trajectory. Measurements of subsporangial turgor pressure using a miniature strain gauge were partially successful, showing a pressure of .11 MPa. The mathematical model found that a pressure of .474 MPa would be needed to propel the projectile over the average measured distance, 1.14 m. The difference between the measured and the predicted results is attributed to error within the mechanical measurements. These results emphasize the importance of using innovative and rigorous methods for measuring internal turgor pressure, and encourage further examination of the Pilobolus spore discharge apparatus. Introduction The unfortunate immobility of the fungi is a limiting factor for their dispersal and distribution. Their sessile state generally leaves two methods of expansion: growth into an adjoining area or dispersal of spores. The latter is often the more feasible option. Fungal spores are lighter and smaller than plant seeds, and consequently encounter increased effects from drag (Vogel 2005). Most fungi do not grow tall enough to effectively send their spores through the sluggish boundary layer of still air surrounding them.
    [Show full text]
  • A Checklist of Coprophilous Fungi and Other Fungi Recorded on Dung from Brazil Introduction Coprophilous Fungi Are an Important
    A checklist of coprophilous fungi and other fungi recorded on dung from Brazil FRANCISCO JUNIOR SIMÕES CALAÇA, NATHAN CARVALHO DA SILVA & SOLANGE XAVIER-SANTOS Universidade Estadual de Goiás, Unidade Universitária de Ciências Exatas e Tecnológicas, BR 153 nº 3.105, Fazenda Barreiro do Meio 75132 903, Anápolis, Goiás, Brazil. CORRESPONDENCE TO: [email protected] ABSTRACT — A review of the literature published between 1919 (the earliest known record) and 2013 has made it possible to confirm the occurrence of 209 species of coprophilous fungi (sensu lato) in Brazil, which are distributed in 259 records in 12 states of the Federation, with Pernambuco being the State most represented. The phylum most found was Ascomycota (117 species), followed by Zygomycota (54), Basidiomycota (25), Myxomycota (11), Oomycota (1) and Proteobacteria (1). KEY WORDS — Brazilian fungi, fimicolous fungi, diversity Introduction Coprophilous fungi are an important group of organisms from the Zygomycota, Ascomycota and Basidiomycota and also some myxomycetes, oomycetes and myxobacteria. They use feces of various animals, especially herbivores, as a substrate (Lundqvist 1972; Bell 1983; Melo, Bezerra & Cavalcanti 2012). These fungi are an ecologically highly adapted group, capable of assimilating nutrients that are not used when food passes through the digestive tract of the animal, thus participating in decomposition processes and helping to recycle these nutrients in the environment (Harrower & Nagy 1979; Ávila, Chávez & García 2001; Krug, Benny & Keller 2004; Masunga et al. 2006; Richardson 2001a; Richardson 2003). The earliest documented record of coprophilous fungi in Brazil dates from 1919, when the mycologist and botanist Carlos Spegazzini (1858-1926) announced the occurrence of Psilocybe merdaria (Fr.) Ricken on Brazilian territory (specific substrate and location not given) (Spegazzini 1919; Katinas, Gutiérrez & Robles 2000).
    [Show full text]
  • Some Factors Involved in Growth and Sporulation of Pilobolus Crystallinus Tode and Pilobolus Umbonatus Buller Kenneth L
    University of Richmond UR Scholarship Repository Master's Theses Student Research 6-1964 Some factors involved in growth and sporulation of Pilobolus Crystallinus Tode and Pilobolus Umbonatus Buller Kenneth L. Poff Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Biology Commons Recommended Citation Poff, Kenneth L., "Some factors involved in growth and sporulation of Pilobolus Crystallinus Tode and Pilobolus Umbonatus Buller" (1964). Master's Theses. Paper 885. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. LIBRARY OF Uniurrsity or1Richmond LIBRARY iiiVERSITY OF RICHMOND VIRGINIA i DATE DUE - 1 ~ _.--=~....... ~ I ---- I I ---- - -- [ - I I - ' - ' i - I. 1.. '. ' i I I l - GAYLORD t'Rl'tT£0fNU.S·"'• I I I SOME FACTORS INVOLVED Ilf GROWTH AND SPORULATION OF PILOBOLUS CRYSTALLINUS TODE AND PILOBOLUS UMBONATUS BULLER A Thesis Presented to the Faculty of the Graduate School of the University of Richmond in Partial Fulfillment or. the Requirements for the Degree of Master of Science LIBRARY ~VERSITY OF RICHMOND VIRGINIA by Kenneth Lloyd Poff June,, 1964 TABLE QE CONTENTS Abstract••••••••••••••••••••••• 1 Acknowledgments •••••••••••••••• 3 Introduction ••••••••••••••••••• 4 Materials and Methods ••••••••.•• 6 Results•••••••••••••••••••••••·lO Discussion
    [Show full text]
  • What Do We Know About Fungi in Yellowstone National Park? Cathy L
    What Do We Know about Fungi in Yellowstone National Park? Cathy L. Cripps and Leslie Eddington C. C C. R I PP S Agaricus species in grassland. ungi are the fabric that holds most ecosystems to- The pathogenic white pine blister rust (Cronartium ribicola), gether, yet they are often forgotten, ignored, underes- accidentally imported from Europe in the early 1900s, is cur- timated, or even reviled. Still it is the fungi in all their rently decimating whitebark pine forests. Fdiverse roles that weave organisms, organic matter, soil, and The bodies of all fungi except yeasts are comprised of rocks together. The Kingdom Fungi includes an estimated 1.5 hyphae, tiny microscopic threads that permeate soil, roots, million species worldwide (Hawksworth 2001)—molds, yeasts, leaves, and wood, feeding off the richness of forests and plant pathogens, aquatic fungi, coral fungi, teeth fungi, bird’s meadows. The mycelium (a mass of hyphal threads) can exist nest fungi, stinkhorns, cup fungi, morels, truffles mushrooms, out-of-sight almost indefinitely. The fleshy fruiting bodies boletes and more. Fungi were once thought to be related to plants (i.e., mushrooms) are the reproductive part of the fungus, but they lack chlorophyll and cellulose cell walls. Instead, fungi ephemeral structures designed to lift the fungus out of the have chitin cell walls, a key fungal characteristic. DNA reveals soil or wood in order to disseminate its reproductive propa- that fungi are most closely related to animals. Like animals they gules as spores. are heterotrophs and must obtain food from an outside source; How many fungi species occur in Yellowstone National in fungi this is accomplished by absorption.
    [Show full text]
  • Growth, Fruiting Body Development and Laccase Production of Selected Coprini
    Growth, fruiting body development and laccase production of selected coprini Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Mónica Navarro González (aus Cuernavaca, Mexiko) Göttingen, den 18.03.2008 D 7 Referent: Prof. Dr. Gerhard Braus Korreferent: Prof. Dr. Andrea Polle Tag der mündlichen Prüfung: 30.04.2008 To my parents: Othón and Isabel and to my nieces and nephews: Samy, Marco, Claus, Aldo, Andy, Lucero, and Montse …for bringing me always motivation, joy and love If you think you are a mushroom, jump into the basket Russian proverb Acknowledgments Since performing Ph. D is more than experiments, tables, graphs, monday seminars, conferences and so on I would like to express my gratitude: I am immensely happy to thank all those who have helped me in this hard way. My gratitude goes to Prof. Dr. Ursula Kües for giving me the opportunity to work in her group and for providing any opportunities for developing myself in many directions during my doctoral studies, and my life in Germany. I sincerely thank Dr. Andrzej Majcherczyk for his advices and direction on part of this work. My special thanks to Dr. Patrik Hoegger for his invaluable support and his endless patience during large part of my work. Furthermore, I would like to thank Prof. Dr. Gerhard Braus, Prof. Dr. Andrea Polle and Prof. Dr. Stefany Pöggeler for their readiness to evaluate my thesis and being my examiners. Víctor Mora-Pérez deserves part of the acknowledgments, without his primary motivation my interest for working with mushrooms during my bachelor studies probably would have never been appeared in my mind.
    [Show full text]
  • Predicting Missing Links in Global Host-Parasite Networks
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965046; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Predicting missing links in global host-parasite networks Maxwell J. Farrell1;2;3∗, Mohamad Elmasri4, David Stephens4 & T. Jonathan Davies5;6 1Department of Biology, McGill University 2Ecology & Evolutionary Biology Department, University of Toronto 3Center for the Ecology of Infectious Diseases, University of Georgia 4Department of Mathematics & Statistics, McGill University 5Botany, Forest & Conservation Sciences, University of British Columbia 6African Centre for DNA Barcoding, University of Johannesburg ∗To whom correspondence should be addressed: e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965046; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract 1 1. Parasites that infect multiple species cause major health burdens globally, but for many, 2 the full suite of susceptible hosts is unknown. Predicting undocumented host-parasite 3 associations will help expand knowledge of parasite host specificities, promote the devel- 4 opment of theory in disease ecology and evolution, and support surveillance of multi-host 5 infectious diseases. Analysis of global species interaction networks allows for leveraging 6 of information across taxa, but link prediction at this scale is often limited by extreme 7 network sparsity, and lack of comparable trait data across species.
    [Show full text]