Growth, Fruiting Body Development and Laccase Production of Selected Coprini

Total Page:16

File Type:pdf, Size:1020Kb

Growth, Fruiting Body Development and Laccase Production of Selected Coprini Growth, fruiting body development and laccase production of selected coprini Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Mónica Navarro González (aus Cuernavaca, Mexiko) Göttingen, den 18.03.2008 D 7 Referent: Prof. Dr. Gerhard Braus Korreferent: Prof. Dr. Andrea Polle Tag der mündlichen Prüfung: 30.04.2008 To my parents: Othón and Isabel and to my nieces and nephews: Samy, Marco, Claus, Aldo, Andy, Lucero, and Montse …for bringing me always motivation, joy and love If you think you are a mushroom, jump into the basket Russian proverb Acknowledgments Since performing Ph. D is more than experiments, tables, graphs, monday seminars, conferences and so on I would like to express my gratitude: I am immensely happy to thank all those who have helped me in this hard way. My gratitude goes to Prof. Dr. Ursula Kües for giving me the opportunity to work in her group and for providing any opportunities for developing myself in many directions during my doctoral studies, and my life in Germany. I sincerely thank Dr. Andrzej Majcherczyk for his advices and direction on part of this work. My special thanks to Dr. Patrik Hoegger for his invaluable support and his endless patience during large part of my work. Furthermore, I would like to thank Prof. Dr. Gerhard Braus, Prof. Dr. Andrea Polle and Prof. Dr. Stefany Pöggeler for their readiness to evaluate my thesis and being my examiners. Víctor Mora-Pérez deserves part of the acknowledgments, without his primary motivation my interest for working with mushrooms during my bachelor studies probably would have never been appeared in my mind. Dr. Mercedes Sobal Cruz motivated me for continuing master studies in the same field. In the same way, I would like to extend my gratitude to Dr. Daniel Martínez-Carrera for making, through his motivation and support, possible this adventure called PhD. If I continue motivated to work with mushrooms is thank to you! By now, it is not easy to find the appropriate words to describe all the feelings towards all the people with whom, in different times, I have been sharing this period of my life. Easy to say, but full of experiences, happiness, disappointments, laughs, anger and even tears… All of you guys have a space in my heart and will never forget all the time we spend together. Thanks for being my colleagues, friends and family at the same time: Akiko Ono, Matthias Hoffmann, Ravi Dwivedi, Rajesh Velagapudi, Sreedhar Kilaru, Prayook Srivilai, Wassana Chaisaena, Kateřina Svobodová, Sudhakar Peddireddi, Kalyani Pemmasani, Annette Naumann, Martin Rühl, Dorothea Fragner, Banyat Cherdchim and Dong Sheng Wei. i Acknowledgments Katka, Wassana, Sudhakar, and Dong Sheng, deserve a special mention (5 stars!) for their invaluable support in the last part of the PhD. Thanks a lot! Impossible to forget Mojtaba Zomorrodi for being always ready to provide anything one ever can imagine for working in the lab, always with a smile on his face. Karin Lange and Alexandra Dolynska deserve a special place for being nice co-workers and loyal friends. I would like to take this opportunity to thank all the members of the Section Molecular Wood Biotechnology and Technical Mycology, and the Section Forest Botany and Physiology of Trees of the Büsgen-Institute, who were always very friendly and kind, especially Andrea Olbrich for their readiness to help me with microscopy stuff; Bernd Kopka for solving the endless problems with the computer and Gisbert Langer-Kettner for solving many of our technical problems in the lab and in the office. During the studies I had the support in the lab form different students, to whom I am also grateful to discover, develop and improve my abilities in teaching: Carmen Yen, Samantha Navarro, Alberto Domingo, Frauke Kleemann, Olivia Sánchez, David Ris and Marlit Arndt. I would like to thank Prof. Stefan Schütz and Pavel Plašil from the Section Forest Zoology and Forest Conservation of the Büsgen-Institute for the collaboration in the mite project. Without your interest in the topic, we would have not gone too far. Prof. Ottmar Holdenrieder from ETH Zurich is greatly acknowledged for his idea to work with coprini, for his valuable comments and his readiness to discuss about my work. I am very grateful to Prof. Susanna Badalyan and her students Lilit Melikyan and Helen Avetisyan from Yerevan State University, Armenia for the nice collaboration built during all these years, hopefully we will continue with our coprini studies! Dr. Peter Beutelmann from the Johannes Gutenberg-University of Mainz is gratefully acknowledged for providing the strains that initiated the chapter 5 of this thesis. ii Acknowledgments International and national friends gave a multicultural invaluable friendship during this time: Crina Vulpe, Tanja Dučić, and especially Artemio Carrillo and Rosa Isela Rasura from bringing a piece of Mexiko to the table every time we had opportunity to share knowledge and Mexican songs! Thank you for being there in good and bad times. I would like to thank to my cousin Miguel Cagigal Navarro, who always encouraged and supported me to continue with postgraduate studies. Special position in this list is given to František Vilčko for the time he has shared with me, his invaluable support and for giving color to my life. No words to express the immense gratitude to my parents Isabel Gonzalez-Vizcarra and Othón Navarro-Tobón, to my sister Diana, brothers Saul, Mario Alberto and Héctor for the immense support given all this years. Thank you all for being there during this time. Last but not least I am very grateful to the Mexican folk, without the money provided for my studies through the Mexican Council for Science and Technology (CONACYT, grant 118752) all this would have not been possible, and the DBU (Deutsche Bundesstiftung Umwelt) for financial support to the laboratory. iii Table of contents Table of contents Acknowledgments i Table of contents v Summary xi Zusammenfassung xv 1. Introduction 1 1.1 Fungi 2 1.2 Wood degradation 3 1.3 Laccases 4 1.4 Mushrooms as economical resources 4 1.5 Coprini 6 1.6 The model fungus Coprinopsis cinerea 10 1.7 Aims of this thesis 16 1.8 References 18 2. Lignocellulolytic activities within coprini species 27 2.1 Abstract 28 2.2 Introduction 29 2.3 Growth of coprini species on wood and other living and dead plant material 31 2.4 Brown-rot or white-rot fungi? 55 2.5 Lignocellulolytic enzymes from coprini species 61 2.6 Conclusions 67 2.7 Acknowledgments 67 2.8 References 67 3. Growth of selected coprini on lignocellulosic substrates and detection of laccase activities 87 3.1 Abstract 88 3.2 Introduction 89 3.3 Materials and methods 90 v Table of contents 3.3.1 Evaluating ITS sequences from coprini 90 3.3.2 Screening of the strains on different media 91 3.3.3 Phenoloxidase activity on solid media 91 3.3.4 Growth on lignocellulosic substrates 91 3.4 Results and discussion 92 3.4.1 Identification of the strains 92 3.4.2 Growth of the strains on artificial media (MEA) at different environmental conditions 97 A. Effect of temperature 97 B. Effect of pH 99 C. Phenoloxidase activity 100 D. Growth of selected strains on lignocellulosic substrates and laccase activities 102 E. Degradation of 14C-labelled lignin: 104 3.5 Conclusions and outlook 106 3.6 Acknowledgments 107 3.7 References 107 4. Biologically active metabolites and medicinal properties of coprinoid mushrooms 111 4.1 Abstract 112 4.2 Introduction 113 4.2.1 Biological safety 114 4.2.2 The Coprinus syndrome 116 4.2.3 Antimicrobial compounds within coprini 121 4.2.4 Hypoglycemic properties 123 4.2.5 Antitumor properties 123 4.2.6 Proteinases 129 4.2.7 Surface proteins 129 4.3 Conclusions 132 4.4 Acknowledgments 133 4.5 References 133 vi Table of contents 5. Monstrosities under the inkcap mushrooms 143 5.1 Abstract 144 5.2 Introduction 145 5.3 Material and methods 146 5.3.1 Strains, culture conditions and spore germination 146 5.3.2 Microscopy 146 5.3.3 DNA techniques 147 5.4 Results and discussion 148 5.4.1 ITS analysis 148 5.4.2 Culture and mycelial characteristics of the four newly isolated strains 149 5.4.3 Fruiting abilities of the Coprinellus sp. 1 153 5.4.4 Fruiting abilities of the Coprinopsis clastophylla 2, 3 and 4 isolates 156 5.4.5 Fruiting abilities of the Coprinopsis clastophylla type strain 159 5.4.6 Fruiting bodies and related sterile structures in Coprinopsis clastophylla, and its anamorph Rhacophyllus lilacinus 161 5.5 Conclusions 163 5.6 Acknowledgments 164 5.7 References 164 6. The course of fruiting body development in the basidiomycete Coprinopsis cinerea (Coprinus cinereus) 167 6.1 Abstract 168 6.2 Introduction 169 6.3 Material and methods 170 6.3.1 Strain and general culture conditions 170 6.3.2 Fruiting bodies dissection in fresh material 170 6.3.3 Microscopic preparations 170 6.4 Results and discussion 171 6.4.1 Time course of fruiting body development 171 6.4.2 Hyphal aggregation 173 6.4.3. Primordia development 175 6.4.3.1 Gill development 179 vii Table of contents 6.4.4. Sexual reproductive development 181 6.4.5. Fruiting body maturation 186 6.4.6. Autolysis 187 6.5 Conclusions 188 6.6 References 188 7. Effect of copper in Coprinopsis cinerea (Coprinus cinereus) development 195 7.1 Abstract 196 7.2 Introduction 197 7.3 Materials and methods 198 7.3.1 Coprinopsis cinerea strain and culture conditions 198 7.3.2 Sampling procedures 199 7.3.3 Enzymatic assays 199 7.3.3.1 Extracellular laccase activity 199 7.3.3.2 Nitrate reductase and Nitrite reductase activity 200 7.3.3.3 Ammonium determination 200 7.3.3.4 Glucose determination 201 7.3.4 Nitrate assimilation gene cluster prediction 201 7.3.5 DNA isolation, RNA isolation, cDNA synthesis and transcript analysis 201 7.4 Results and discussion 204 7.4.1 Copper, laccase activity and fruiting in liquid cultures 204 7.4.2 Fruiting pathway of etiolated stipes in liquid cultures 209 7.4.3 Copper and fruiting in solid cultures 211 7.4.4 Other effects by copper in liquid cultures at 37°C 217 7.4.5 Transcript profiles for the nitrate assimilation gene cluster 220 7.5 Conclusions 222 7.6 Acknowledgments 222 7.7 References 222 8.
Recommended publications
  • BGBM Annual Report 2017–2019
    NETWORKING FOR DIVERSITY Annual Report 2017 – 2019 2017 – BGBM BGBM Annual Report 2017 – 2019 Cover image: Research into global biodiversity and its significance for humanity is impossible without networks. The topic of networking can be understood in different ways: in the natural world, with the life processes within an organism – visible in the network of the veins of a leaf or in the genetic diversity in populations of plants – networking takes place by means of pollen, via pollinators or the wind. In the world of research, individual objects, such as a particular plant, are networked with the data obtained from them. Networking is also crucial if this data is to be effective as a knowledge base for solving global issues of the future: collaboration between scientific experts within and across disciplines and with stakeholders at regional, national and international level. Contents Foreword 5 Organisation 56 A network for plants 6 Facts and figures 57 Staff, visiting scientists, doctoral students 57 Key events of 2017 – 2019 10 Affiliated and unsalaried scientists, volunteers 58 BGBM publications 59 When diversity goes online 16 Species newly described by BGBM authors 78 Families and genera newly described by BGBM authors 82 On the quest for diversity 20 Online resources and databases 83 Externally funded projects 87 Invisible diversity 24 Hosted scientific events 2017 – 2019 92 Collections 93 Humboldt 2.0 30 Library 96 BGBM Press: publications 97 Between East and West 36 Botanical Museum 99 Press and public relations 101 At the service of science 40 Visitor numbers 102 Budget 103 A research museum 44 Publication information 104 Hands-on science 50 Our symbol, the corncockle 52 4 5 Foreword BGBM Annual Report 2017 – 2019 We are facing vital challenges.
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Agaricales, Basidiomycota) Occurring in Punjab, India
    Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms.
    [Show full text]
  • Key to the Genera of Clavarioid Fungi in Northern Europe
    Key to the genera of clavarioid fungi in Northern Europe Jens H. Petersen/Borgsjö 1999 University of Aarhus, Institute of Systematic Botany • www.mycokey.com Key to clavarioid genera – Jens H. Petersen/Borgsjö 1999 KEY TO THE GENERA OF CLAVARIOID FUNGI (BASIDIOMYCOTA) IN NORTHERN EUROPE 1. Fruitbodies repeatedly branched (coralloide) 2 Fruitbodies simple club-shaped or with one or two irregular branchings 12 2. Spore deposit ±brown 3 Spore deposit white to cream 4 3. Tops flattened, spathula like; hymenium not green with FeSO4; hyphae ±brown. Thelephora palmata Tops rounded to subcristate; hymenium green with FeSO4; Thelephora palmata – © Thomas Læssøe hyphae hyalin. Ramaria Ramaria eumorpha – © JHP 4. Apices flattened, spathula like; basidia with longitudinal internal walls. Tremellodendriopsis tuberosa Apices rounded to subcristate; basidia without internal walls 5 Tremellodendropsis tuberosa – © Jan Vesterholt 5. With a strong smell of naphthalene; flesh dimitic with sceletal hyphae. Pterula Without a smell of naphthalene; hyphal system monomitic 6 Pterula multifida – © JHP 2 Key to clavarioid genera – Jens H. Petersen/Borgsjö 1999 6. Flesh tough and elastic; fruitbody yellow; basidia tuning fork like. Calocera Flesh soft and fragile or colour different; basidia club-shaped 7 Calocera viscosa – © JHP 7. Tops truncate to trumpet-shaped; with gloeocystidia in the hymenium; spores amyloid. Clavicorona Tops acute to rounded; without gloeocystidia; spores non- amyloid 8 Clavicorona pyxidata – © Thomas Læssøe 8. Growing on wood, sawdust etc.; spores cylindrical to sigmoid. Lentaria Growing on soil; spores globose, subglobose to elliptical 9 Lentaria epichnoa – © Jacob Heilmann-Clausen 9. Basidia two-spored with horn-like sterigmata; spores globose; branches often wrinkled or with subcristate tops.
    [Show full text]
  • Cytotoxic Triterpenoids from the Mushroom Clavulina Cinerea (Bull) J
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 11(2): 865-873, April 2017 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Cytotoxic triterpenoids from the mushroom Clavulina cinerea (Bull) J. Schröt (cantharellaceae) Alice W. NJUE*, Josiah O. OMOLO, Peter K. CHEPLOGOI and Abigael W. WAWERU Department of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya. * Corresponding author; E-mail: [email protected] ACKNOWLEDGEMENTS This work was supported financially by Commonwealth Scholarship Commission (CSC) and the National Commission for Science, Technology and Innovation (NACOSTI), Kenya. ABSTRACT C. cinerea (Bull) J. Schröt (Lyophyllaceae) is among the many edible mushrooms in Kenya and is also traditionally regarded as a complementary medicine for chronically-ill people. The use of these mushrooms in the East African prompted this investigation in which the phytochemistry and potential anti-cancer activity was studied. Chemical constituents of C. cinerea were isolated using chromatographic techniques and structures were determined using NMR spectroscopic methods. The NCI 60 human cancer cell line panel was used to evaluate the cytotoxicity of the compounds isolated at 10µM. Three triterpenes, ergosta-7,22-dien-3β-ol (1), 5α,6α-epoxyergosta-8(14),22-dien-3β,7α-diol (2) and ergosta-7,22-dien-3β,5α,6β,-triol (3) and pentacyclic triterpenoids β-amyrin (4) were isolated. The compounds were found to possess moderate toxicity against most of the cancer cell lines. © 2017 International Formulae Group. All rights reserved. Keywords. Antiproliferative, clavulina cinerea, cytotoxic, ergostane, triterpenoids.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Alcohol-Medication Interactions: the Acetaldehyde Syndrome
    arm Ph ac f ov l o i a g n il r a n u c o e J Journal of Pharmacovigilance Borja-Oliveira, J Pharmacovigilance 2014, 2:5 ISSN: 2329-6887 DOI: 10.4172/2329-6887.1000145 Review Article Open Access Alcohol-Medication Interactions: The Acetaldehyde Syndrome Caroline R Borja-Oliveira* University of São Paulo, School of Arts, Sciences and Humanities, São Paulo 03828-000, Brazil *Corresponding author: Caroline R Borja-Oliveira, University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Bettio, 1000, Ermelino Matarazzo, São Paulo 03828-000, Brazil, Tel: +55-11-30911027; E-mail: [email protected] Received date: August 21, 2014, Accepted date: September 11, 2014, Published date: September 20, 2014 Copyright: © 2014 Borja-Oliveira CR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Medications that inhibit aldehyde dehydrogenase when coadministered with alcohol produce accumulation of acetaldehyde. Acetaldehyde toxic effects are characterized by facial flushing, nausea, vomiting, tachycardia and hypotension, symptoms known as acetaldehyde syndrome, disulfiram-like reactions or antabuse effects. Severe and even fatal outcomes are reported. Besides the aversive drugs used in alcohol dependence disulfiram and cyanamide (carbimide), several other pharmaceutical agents are known to produce alcohol intolerance, such as certain anti-infectives, as cephalosporins, nitroimidazoles and furazolidone, dermatological preparations, as tacrolimus and pimecrolimus, as well as chlorpropamide and nilutamide. The reactions are also observed in some individuals after the simultaneous use of products containing alcohol and disulfiram-like reactions inducers.
    [Show full text]
  • Coprinellus Andreorum: a New Species from Malta and South America
    IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 21-29 Journal homepage: https://italianmycology.unibo.it/ Short note Coprinellus andreorum: a new species from Malta and South America Carmel Sammut1, Alexander Karich2 1 - 216 Flat 1 St. Joseph Flts., Rue d´Argens, Gzira, GZR 1367, Malta 2 - Technische Universität Dresden - International Institut Zittau, Markt 23, 02763 Zittau, Germany Corresponding author e-mail: [email protected] ARTICLE INFO Received 22/2/2021; accepted 14/4/2021 https://doi.org/10.6092/issn.2531-7342/12445 Abstract Coprinellus andreorum sp. nov. is described for the first time from Malta. A full description with illustrations of the macro- and micromorphological characters, as well as its phylogenetic position is provided. This species differs from Coprinellus aureogranulatus by the large pleurocystidia, the narrower spores and multidigitate caulocystidia. Some species from sect. Domestici are discussed and compared. Keywords Agaricales, Psathyrellaceae, Aureogranulati, morphology, taxonomy Introduction Following a recent clearing of a small area in Buskett (Siggiewi, Malta) several large dead branches of Ceratonia siliqua L. were torn down to smaller pieces and dispersed above the soil together with other dead branches from Quercus ilex L. The sudden abundance, on the soil, of degraded lignicolous material coupled with abundant rain in the early weeks of October 2020 has resulted in a number of fast growing coprinii appearing over a few days towards the end of October. The list of lignicolous fungi noted in the area were both previously encountered as well as new records for the area and include Parasola conopilea (Fr.) Örstadius & E. Larss., Coprinopsis melanthina (Fr.) Örstadius & E.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • New Species and New Records of Clavariaceae (Agaricales) from Brazil
    Phytotaxa 253 (1): 001–026 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.253.1.1 New species and new records of Clavariaceae (Agaricales) from Brazil ARIADNE N. M. FURTADO1*, PABLO P. DANIËLS2 & MARIA ALICE NEVES1 1Laboratório de Micologia−MICOLAB, PPG-FAP, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. 2Department of Botany, Ecology and Plant Physiology, Ed. Celestino Mutis, 3a pta. Campus Rabanales, University of Córdoba. 14071 Córdoba, Spain. *Corresponding author: Email: [email protected] Phone: +55 83 996110326 ABSTRACT Fourteen species in three genera of Clavariaceae from the Atlantic Forest of Brazil are described (six Clavaria, seven Cla- vulinopsis and one Ramariopsis). Clavaria diverticulata, Clavulinopsis dimorphica and Clavulinopsis imperata are new species, and Clavaria gibbsiae, Clavaria fumosa and Clavulinopsis helvola are reported for the first time for the country. Illustrations of the basidiomata and the microstructures are provided for all taxa, as well as SEM images of ornamented basidiospores which occur in Clavulinopsis helvola and Ramariopsis kunzei. A key to the Clavariaceae of Brazil is also included. Key words: clavarioid; morphology; taxonomy Introduction Clavariaceae Chevall. (Agaricales) comprises species with various types of basidiomata, including clavate, coralloid, resupinate, pendant-hydnoid and hygrophoroid forms (Hibbett & Thorn 2001, Birkebak et al. 2013). The family was first proposed to accommodate mostly saprophytic club and coral-like fungi that were previously placed in Clavaria Vaill. ex. L., including species that are now in other genera and families, such as Clavulina J.Schröt.
    [Show full text]