Sulfenic Acid Chemistry, Detection and Cellular Lifetime☆
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dimethyl Sulfoxide MSDS
He a lt h 1 2 Fire 2 2 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n F Material Safety Data Sheet Dimethyl sulfoxide MSDS Section 1: Chemical Product and Company Identification Product Name: Dimethyl sulfoxide Contact Information: Catalog Codes: SLD3139, SLD1015 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 67-68-5 Houston, Texas 77396 RTECS: PV6210000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Dimethyl sulfoxide Order Online: ScienceLab.com CI#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: Synonym: Methyl Sulfoxide; DMSO 1-800-424-9300 Chemical Name: Dimethyl Sulfoxide International CHEMTREC, call: 1-703-527-3887 Chemical Formula: (CH3)2SO For non-emergency assistance, call: 1-281-441-4400 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Dimethyl sulfoxide 67-68-5 100 Toxicological Data on Ingredients: Dimethyl sulfoxide: ORAL (LD50): Acute: 14500 mg/kg [Rat]. 7920 mg/kg [Mouse]. DERMAL (LD50): Acute: 40000 mg/kg [Rat]. Section 3: Hazards Identification Potential Acute Health Effects: Slightly hazardous in case of inhalation (lung irritant). Slightly hazardous in case of skin contact (irritant, permeator), of eye contact (irritant), of ingestion, . Potential Chronic Health Effects: Slightly hazardous in case of skin contact (irritant, sensitizer, permeator), of ingestion. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to blood, kidneys, liver, mucous membranes, skin, eyes. -
Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells Lisa J
Letters Cite This: ACS Chem. Biol. 2019, 14, 594−598 pubs.acs.org/acschemicalbiology Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells Lisa J. Alcock,†,‡ Bruno L. Oliveira,§ Michael J. Deery,∥ Tara L. Pukala,⊥ Michael V. Perkins,† Goncalo̧ J. L. Bernardes,*,§,# and Justin M. Chalker*,†,‡ † Flinders University, College of Science and Engineering, Sturt Road, Bedford Park, South Australia 5042, Australia ‡ Flinders University, Institute for NanoScale Science and Technology, Sturt Road, Bedford Park, South Australia 5042, Australia § Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ∥ Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom ⊥ The University of Adelaide, School of Physical Sciences, Adelaide, South Australia 5005, Australia # Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal *S Supporting Information ABSTRACT: Norbornene derivatives were validated as probes for cysteine sulfenic acid on proteins and in live cells. Trapping sulfenic acids with norbornene probes is highly selective and revealed a different reactivity profile than the traditional dimedone reagent. The norbornene probe also revealed a superior chemoselectivity when compared to a commonly used dimedone probe. Together, these results advance the study of cysteine oxidation in biological systems. -
Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum
cells Review Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum Jennifer M. Roscoe and Carolyn S. Sevier * Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-607-253-3657 Received: 14 September 2020; Accepted: 15 October 2020; Published: 18 October 2020 Abstract: The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide, including sources within and near the ER. Focusing on three ER-localized proteins—the molecular chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2—we discuss how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review how changed activities for these three proteins upon oxidation can modulate signaling events, and also how cysteine oxidation can serve to limit the cellular damage that is most often associated with elevated peroxide levels. Keywords: endoplasmic reticulum (ER); hydrogen peroxide; reactive oxygen species (ROS); redox signaling; cysteine oxidation; BiP; IRE1; SERCA2; unfolded protein response (UPR) 1. Introduction All cells are susceptible to oxidative damage. Damage often appears concomitant with a buildup of reactive oxidants and/or a loss of antioxidant systems. In particular, an accumulation of cellular reactive oxygen species (ROS) has attracted much attention as a source of cellular damage and a cause for a loss of cellular function [1]. In keeping with these observations, most historical discussions of ROS focus on the need to defend against the toxic and unavoidable consequences of cellular ROS production, in order to limit cellular dysfunction and disease. -
Vulcanization & Accelerators
Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia. -
1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, in Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study
molecules Article 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, In Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study Danuta Branowska 1, Zbigniew Karczmarzyk 1,*, Ewa Woli ´nska 1, Waldemar Wysocki 1, Maja Morawiak 2 , Zofia Urba ´nczyk-Lipkowska 2 , Anna Bielawska 3 and Krzysztof Bielawski 3 1 Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; [email protected] (D.B.); [email protected] (E.W.); [email protected] (W.W.) 2 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; [email protected] (M.M.); zofi[email protected] (Z.U.-L.) 3 Medical University of Bialystok, Department of Medicinal Chemistry and Drug Technology, J. Kilinskiego 1, 15-089 Bialystok, Poland; [email protected] (A.B.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +48-25-643-1017 Received: 24 March 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: In this study, we synthesized novel sulfonamides with a 1,2,4-triazine moiety according to pharmacophore requirements for biological activity. All the synthesized compounds were tested in vitro to verify whether they exhibited anticancer activity against the human breast cancer cell lines MCF-7 and MDA-MB-231. Among them, two most active ones, having IC50 values of 50 and 42 µM, respectively, were found to show higher anticancer activity than chlorambucil used as the reference in the in vitro tests. In addition, two other compounds, which had IC50 values of 78 and 91 µM, respectively, exhibited a similar level of activity as chlorambucil. -
A Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations
1074 J. Phys. Chem. A 2002, 106, 1074-1080 A Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations Matthew L. Strader and Scott E. Feller* Department of Chemistry, Wabash College, CrawfordsVille, Indiana 47933 ReceiVed: October 1, 2001 An all-atom, flexible dimethyl sulfoxide model has been created for molecular dynamics simulations. The new model was tested against experiment for an array of thermodynamic, structural, and dynamic properties. Interactions with water were compared with previous simulations and experimental studies, and the unusual changes exhibited by dimethyl sulfoxide/water mixtures, such as the enhanced structure of the solution, were reproduced by the new model. Particular attention was given to the design of the electrostatic component of the force field and to providing compatibility with the CHARMM parameter sets for biomolecules. Introduction mixtures,14,17,18 and its interaction with a phospholipid bi- Theoretical methods for the investigation of biological layer.19,20 Simulations published to date have utilized a rigid, molecules have become commonplace in biochemistry and united-atom model where each methyl group is represented by biophysics.1 These approaches provide detailed atomic models a single atomic center and all bond lengths and angles are fixed of biological systems, from which structure-function relation- at their equilibrium values. Another feature common to most ships can be elucidated. Methods based on empirical force fields, of these models is the use of the same charge distribution, such as molecular dynamics (MD) simulations, allow for namely that obtained by Rao and Singh from a Hartree-Fock calculations on relatively large systems, e.g., complete biomol- 6-31G* ab initio quantum mechanical calculation.21 ecules or assemblies of biomolecules in their aqueous environ- Recent advances in computer hardware now allow a flexible, ment. -
Free-Radical Chain Reactions of Organic Mercury and Tin Compounds Hasan I
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 Free-radical chain reactions of organic mercury and tin compounds Hasan I. Tashtoush Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Tashtoush, Hasan I., "Free-radical chain reactions of organic mercury and tin compounds " (1984). Retrospective Theses and Dissertations. 7733. https://lib.dr.iastate.edu/rtd/7733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
Amide Activation: an Emerging Tool for Chemoselective Synthesis
Featuring work from the research group of Professor As featured in: Nuno Maulide, University of Vienna, Vienna, Austria Amide activation: an emerging tool for chemoselective synthesis Let them stand out of the crowd – Amide activation enables the chemoselective modification of a large variety of molecules while leaving many other functional groups untouched, making it attractive for the synthesis of sophisticated targets. This issue features a review on this emerging field and its application in total synthesis. See Nuno Maulide et al., Chem. Soc. Rev., 2018, 47, 7899. rsc.li/chem-soc-rev Registered charity number: 207890 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Amide activation: an emerging tool for chemoselective synthesis Cite this: Chem. Soc. Rev., 2018, 47,7899 Daniel Kaiser, Adriano Bauer, Miran Lemmerer and Nuno Maulide * It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. Received 27th April 2018 However, a significant body of research on the selective activation of amides to achieve powerful DOI: 10.1039/c8cs00335a transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product rsc.li/chem-soc-rev synthesis, highlighting the synthetic applications and the potential of this approach. Creative Commons Attribution 3.0 Unported Licence. -
THE CHEMISTRY of SULFENIMIDES by Barbara Ann Orwig a Thesis
THE CHEMISTRY OF SULFENIMIDES by Barbara Ann Orwig A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science Department of Chemistry McGill University Montreal, P.Q. Canada May 1971 @) Barbara Ann Orwig 1972 Dedicated to My Parents Il Thanx Il i ACKNOWLEDGEMENTS 3l MY thanks to Dr. D.F.R. Gilson for the p nmr spectra, to Victor Yu for the A-60 nmr spectra, and to Peter Currie for the mass spectra. For helpful discussions and worthwhile suggestions l thank David Ash 1 Errol Chang 1 and John Gleason. For his guidance and help as my research director l thank Dr. David N. Harpp. And to Elva and Hermann Heyge go special thanks for their help and for "putting up wi th œil. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i INTRODUcrION 1 EXPERIMENTAL SECTION 22 RESULTS AND DISCUSSION 42 TABLES 1 Preparation of Sulfenyl Chlorides 72 2 Preparation of N-(alkyl/aryl thio)phthalimides 73 3 Desulfurization Reactions of N-(alkyl/aryl thio)phthalimides 76 4 Mass Spectra of N-(alkyl/aryl thio)phthalimides 77 FIGURES (Spectra) 78 - 87 BIBLIOGRAPHY 88 INTRODUcrION AND BACKGROUND Sulfenic acids Cl), in which sulfur exists in its R-S-OH l lcwest oxidation state, are highly lmstable compolmds and only a few l have been isolated. The derivatives of sulfenic acid {~.> however, are generally isolable and usually stable. 2 R-S-Y 2 When Y is -NH ' -~HR, or -NR ' the resulting class of compolmds is 2 2 ter.med sulfenamides. -
8.6 Acidity of Alcohols and Thiols 355
08_BRCLoudon_pgs5-1.qxd 12/8/08 11:05 AM Page 355 8.6 ACIDITY OF ALCOHOLS AND THIOLS 355 ural barrier to the passage of ions. However, the hydrocarbon surface of nonactin allows it to enter readily into, and pass through, membranes. Because nonactin binds and thus transports ions, the ion balance crucial to proper cell function is upset, and the cell dies. Ion Channels Ion channels, or “ion gates,” provide passageways for ions into and out of cells. (Recall that ions are not soluble in membrane phospholipids.) The flow of ions is essen- tial for the transmission of nerve impulses and for other biological processes. A typical chan- nel is a large protein molecule imbedded in a cell membrane. Through various mechanisms, ion channels can be opened or closed to regulate the concentration of ions in the interior of the cell. Ions do not diffuse passively through an open channel; rather, an open channel contains regions that bind a specific ion. Such an ion is bound specifically within the channel at one side of the membrane and is somehow expelled from the channel on the other side. Remark- ably, the structures of the ion-binding regions of these channels have much in common with the structures of ionophores such as nonactin. The first X-ray crystal structure of a potassium- ion channel was determined in 1998 by a team of scientists at Rockefeller University led by Prof. Roderick MacKinnon (b. 1956), who shared the 2003 Nobel Prize in Chemistry for this work. The interior of the channel contains binding sites for two potassium ions; these sites are oxygen-rich, much like the interior of nonactin. -
The Use of Chlorosulfonic Acid in the Identification Of' Halogen Substitute):) Aromatic Compounds
THE USE OF CHLOROSULFONIC ACID IN THE IDENTIFICATION OF' HALOGEN SUBSTITUTE):) AROMATIC COMPOUNDS UI\LAt!UlU !GHirULTITRE & MECHANICAL COU"RI. ; LIBRA ]{Y i OCT 26 1937 THE USE OF CHLOROSULFONIC ACID IN THE IDENTIFICATION OF HALOGEN SUBSTITUTED AROMATIC COMPOUNDS By Elton Murray Baker,. Bachelor of Soience North.. estern State Teachers College 1955 Submitted to the Department of Chemistry Oklahoma Agricultural. and Mechanical. College In partial fulfillment of the requirements for the Degree of MASrER OF SCIENCE 1957 - ' ' • ~9 ! . • • • • r •: .. : : ... ..... .. ' .. .. ... ... .. .. ·.... ... .... ~ ~ ( . .. : : ( ~ · : ·. ... ' . • '' . OKLAHOMA ~liBICUL TURE &MECIL\NIO AL eniLEal ii LIBR ARY OCT 261937 APPROVED: In Charge of Thesis Head of the Department of Chemistry ~'~~Dean of the Graduate School. 100711 iii TABLE OF CONTENTS Page Introduction . • • • • • • • 1 Historical Review • • • 2 Experimental • • • • • • • • • 9 Discussion of Results • • .. • • • • 29 Summary • • • • • • • • • • • . 51 Bibliography . • • • ... • • • • • • 52 Autobiography • • • • • • • • • • • • • • • 56 iv ACKNOWLEDGEMENT The author wishes to express his sincere appreciation to Dr. o. c. Dermer under whose direction this work was done. He also .wishes to acknowledge the service rendered by t he Oklahoma Agricultural and Mechanical College Librarians and Chemistry Storeroom assistants. 1 INTBOOOO!'ION The identification of aromatic halides is generally accomplished by converting them into mono or pol.ynitro derivatives. The reaction is not always easy to control., however_. and sometimes gives mixtures hard to purify. In View of the rea<V' con'Vereion of aroma.tie hydrocarbons into solid s-ulfonyl chloride deri.Yatives by chloro.eulfonic acid~ it seemed profitable to extend the reaction to include aromatic halides. The method has the added advantage that, if a sulfonyl chloride is hard to plil'ify or does not uniquely identify a compound, it may he very ee{!ily converted into the suli'onamide,, which is general.ly a satisfactory derivative. -
Technical Notes
1624 Bioconjugate Chem. 2005, 16, 1624−1628 TECHNICAL NOTES Synthesis of Chemical Probes to Map Sulfenic Acid Modifications on Proteins Leslie B. Poole,†* Bu-Bing Zeng,‡,| Sarah A. Knaggs,‡ Mamudu Yakubu,§ and S. Bruce King‡,* Departments of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, North Carolina 27109, and Department of Chemistry, Elizabeth City State University, Elizabeth City, North Carolina 27909 . Received August 23, 2005 Cysteine sulfenic acids in proteins can be identified by their ability to form adducts with dimedone, but this reagent imparts no spectral or affinity tag for subsequent analyses of such tagged proteins. Given its similar reactivity toward cysteine sulfenic acids, 1,3-cyclohexadione was synthetically modified to an alcohol derivative and linked to fluorophores based on isatoic acid and 7-methoxycou- marin. The resulting compounds retain full reactivity and specificity toward cysteine sulfenic acids in proteins, allowing for incorporation of the fluorescent label into the protein and “tagging” it based on its sulfenic acid redox state. Control experiments using dimedone further show the specificity of the reaction of 1,3-diones with protein sulfenic acids in aqueous media. These new compounds provide the basis for an improved method for the detection of protein sulfenic acids. INTRODUCTION Scheme 1 Interest in the identification of cysteine sulfenic acids in proteins by biochemists has grown substantially over the past decade as their biological roles in redox regula- tion and catalysis within an array of cellular proteins have become better defined (1, 2). Despite their impor- tance, only a limited set of tools to identify these species exist, and most of these are only applicable to in vitro studies of pure, isolated proteins (3, 4).