VTT Technology 342: the 3Rd Conference of the International

Total Page:16

File Type:pdf, Size:1020Kb

VTT Technology 342: the 3Rd Conference of the International NOL CH OG E Y T • • R E E C S N E E The 3rd Conference of the International Society for A I 342 R VTT TECHNOLOGY C C Plant Molecular Farming S H • S H N June 11-13, 2018: Book of abstracts 3 4 2 I G O I H S L I I V G • H S T T he 3rd C o nference of the Internatio nal... The 3rd Conference of the International Society for Plant Molecular Farming June 11-13, 2018: Book of abstracts ISBN 978-951-38-8674-5 (URL: http://www.vttresearch.com/impact/publications) ISSN-L 2242-1211 ISSN 2242-122X (Online) Kirsi-Marja Oksman | Anneli Ritala | Heiko Rischer | http://urn.fi/URN:ISBN:978-951-38-8674-5 Suvi Häkkinen | Jussi Joensuu | Päivi Vahala (Eds.) VTT TECHNOLOGY 342 The 3rd Conference of the International Society for Plant Molecular Farming June 11-13, 2018: Book of abstracts Editors: Kirsi-Marja Oksman Anneli Ritala Heiko Rischer Suvi Häkkinen Jussi Joensuu Päivi Vahala VTT Technical Research Centre of Finland Ltd ISBN 978-951-38-8674-5 (URL: http://www.vttresearch.com/impact/publications) VTT Technology 342 ISSN-L 2242-1211 ISSN 2242-122X (Online) http://urn.fi/URN:ISBN:978-951-38-8674-5 Copyright © VTT 2018 JULKAISIJA – UTGIVARE – PUBLISHER Teknologian tutkimuskeskus VTT Oy PL 1000 (Tekniikantie 4 A, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 7001 Teknologiska forskningscentralen VTT Ab PB 1000 (Teknikvägen 4 A, Esbo) FI-02044 VTT Tfn +358 20 722 111, telefax +358 20 722 7001 VTT Technical Research Centre of Finland Ltd P.O. Box 1000 (Tekniikantie 4 A, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax +358 20 722 7001 Cover image: Maria Teresa Capell Congress Sponsors Conference Sponsors The congress organizers and the International Society of Plant Molecular Farming would like to thank warmly all the sponsors for their valuable contributions. 1 2 Table of Contents Table of Contents Conference Sponsors .......................................................................................................... 1 Table of Contents ................................................................................................................ 3 Welcome to Helsinki .......................................................................................................... 11 Organizing Committee ....................................................................................................... 12 From the Organizing Committee ........................................................................................ 13 Keynote Speakers ............................................................................................................. 15 Social Events ..................................................................................................................... 21 Useful Information of Helsinki ............................................................................................ 23 Scientific Programme ......................................................................................................... 27 Video presenting the biodiversity of Finnish nature ........................................................... 35 Eija Lehmuskallio SESSION 1 Keynote: Plant biotechnology beyond genome era in the dawn of synthetic biology ........ 41 Kirsi-Marja Oksman-Caldentey Manufacturing plant based vaccines “Rift Valley Fever Virus – A case study” ................... 43 Kellner F, Holton N, Cater P, Charlton S, Dowall S A triple combination microbicide against HIV-1 expressed in rice ...................................... 45 Capell T, Vamvaka E, Farré G, Molinos-Albert LM, Evans A, Canela-Xandri A, Twyman RM, Carrillo J, Ordóñez RA, Shattock R, O’Keefe BR, Clotet B, Blanco J, Christou P Modulation of sesquiterpene biosynthesis in khat (Catha edulis) leaves upon harvesting . 47 Lewinsohn E, Bar E, Shotland Y, Hagel JM, Facchini PJ, Dudareva N, Davidovich-Rikanati R Future of disruptive technologies and plant molecular farming .......................................... 49 Reuter L SESSION 2 Keynote: A critical view on the business potential of recombinant protein production in plants ......................................................................................................................... 53 Stefan Schillberg Pharmacokinetics, pharmacodynamics, and safety of Moss-aGalactosidase A in patients with Fabry disease ....................................................................................... 55 Schaaf A, Hennermann JB, Arash-Kaps L, Fekete G, Busch A, Frischmuth, T Immunogenicity of plant-produced porcine circovirus-like particles ................................... 57 Gunter CJ, Regnard GL, Rybicki EP, Hitzeroth II 3 Table of Contents Keynote: Phytochemical genomics: from Arabidopsis to medicinal plants........................ 59 Kazuki Saito Using a synthetic biology approach to develop a novel, easy to use, and open access transient expression system ...................................................................................... 61 Peyret H, Lomonossoff GP Small, Smaller, Nano: New Applications for Potato Virus X in BioNanotechnology ........... 63 Dickmeis C, Röder J, Commandeur U Tailoring Bioactive Natural Products with Glycosyltransferases ........................................ 65 Härtl K, Schwab W SESSION 3 Keynote: From genes to products: A plant biotechnology product portfolio for human and animal health and nutrition ..................................................................... 69 Christou P, Capell T, Zhu C Toward engineering of cannabinoid biosynthesis: In-planta characterization of enzymes involved in the synthesis of THCA and derivatives..................................... 71 Warzecha H, Geissler M, Volk J, Stehle F, Kayser O Supporting explorers on Mars: A biomanufacturing solution for producing biologics during deep space exploration .................................................................................. 73 Nandi S, Karuppanan K, McNulty M, McDonald KA Keynote: On-demand gene expression in plants: New frontiers set by the new synthetic expression system ...................................................................................... 75 Dominik Mojzita Recombinant human osteopontin expressed in Nicotiana benthamiana stimulates osteogenesis related genes in human periodontal ligament cells .............................. 77 Rattanapisit, K, Abdulheem S, Chaikeawkaew D, Kubera A, Mason HS, Ma JKC, Pavasant P, Phoolcharoen W Plant somatic embryo cultures are a profitable source of compounds with skin rejuvenating activity............................................................................................ 79 Barbulova A, Sena LM, Apone F, Colucci MG Combinatorial design of modular and programmable transcriptional regulators in plants .. 81 Selma García S, Bernabé Orts J, Ajenjo Bauzá M, Diego Martin B, Vazquez Vilar M, Granell A and Orzaez D Molecular Farming 6.0: Hexa-mutant Nicotiana benthamiana plants lacking plant plant- specific N-glycans for transient expression ............................................................... 83 Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L Keynote: Genome editing: challenging our views and interpretation of the current regulatory systems .................................................................................................... 85 Joachim Schiemann SESSION 4 Keynote: Development of the next generation influenza vaccine ..................................... 89 Marc-André D’Aoust Genome editing of Nicotiona tabacum suspension cells by a multiplex CRISPR/Cas9 strategy results in humanized pharmaceutical glycoproteins without plant specific glycans .................................................................................... 91 Mercx S, Smargiasso N, Chaumont F, De Pauw E, Boutry M, Navarre C 4 Table of Contents Colour bio-factories: scale-up production of anthocyanins in plant cell cultures ................ 93 Appelhagen I, Wulff-Vester AK, Hvoslef-Eide AK, Russell J, Oertel A, Martens S, Mock H-P, Martin C, Matros A pH gradient mitigation in the leaf cell secretory pathway – One goal, several effects ........ 95 Jutras PV, Goulet MC, Lavoie PO, Tardif R, Hamel LP, D’Aoust MA, Sainsbury F, Michaud D Keynote: Natural products based molecules for target and drug discovery in pharmaceutical research ........................................................................................... 97 Frank Petersen Prolonging serum half-life of plant-made anti-HIV broadly neutralising antibodies (bNAbs) by improving binding to human neonatal Fc receptor (hFcRn) and reducing binding to human macrophage receptor (hMR) ......................................................................... 99 Teh AYH., Stelter S, van Dolleweerd C, Ma JKC Production of secondary metabolites with plant cell cultures from an eco-sustainable view ............................................................................................... 101 Ullish DA, Sankar-Thomas YD, Selge T, Ellert C, Pump M, Leibold T, Schütte K, Gorr G Developing an IgA biobetter antibody against E. coli O157:H7 with enhanced stability by rational design of a bovine Fc chain ...................................................... 103 Chin-Fatt A, Menassa R SESSION 5 Keynote: A multi-omics approach to harness tobacco biochemistry ............................... 107 Jennifer Bromley Recombinant production of the toxic anti-cancer lectin viscumin in tobacco plants and microbial cells. A comparative analysis of yield, process costs and toxicity ............ 109 Gengenbach BB, Keil LL, Opdensteinen P, Müschen CR, Buyel JF Plant-made antimicrobial
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Computational and Systems Biology Themed Issue
    View Article Online / Journal Homepage / Table of Contents for this issue Molecular BioSystems This article was published as part of the Computational and Systems Biology themed issue Please take a look at the full table of contents to access the other papers in this issue. Open Access Article. Published on 13 October 2009. Downloaded 9/23/2021 6:41:00 PM. View Article Online PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteinswz Lakshminarayan M. Iyer,a Saraswathi Abhiman,a A. Maxwell Burroughsb and L. Aravind*a Received 28th August 2009, Accepted 28th August 2009 First published as an Advance Article on the web 13th October 2009 DOI: 10.1039/b917682a Recent studies have shown that the ubiquitin system had its origins in ancient cofactor/amino acid biosynthesis pathways. Preliminary studies also indicated that conjugation systems for other peptide tags on proteins, such as pupylation, have evolutionary links to cofactor/amino acid biosynthesis pathways. Following up on these observations, we systematically investigated the non-ribosomal amidoligases of the ATP-grasp, glutamine synthetase-like and acetyltransferase folds by classifying the known members and identifying novel versions. We then established their contextual connections using information from domain architectures and conserved gene neighborhoods. This showed remarkable, previously uncharacterized functional links between diverse peptide ligases, several peptidases of unrelated folds and enzymes involved in synthesis of modified amino acids. Using the network of contextual connections we were able to predict numerous novel pathways for peptide synthesis and modification, amine-utilization, secondary metabolite synthesis and potential peptide-tagging systems.
    [Show full text]
  • Comparative Genomics of the Mycobacterium Ulcerans And
    MPhil Thesis Ken Doig (197821835) MPhil Thesis – 2012 Candidate Kenneth Douglas Doig Student No. 197821835 Title Comparative genomics of the Mycobacterium ulcerans and Mycobacterium marinum complex Status Submitted in total fulfilment of the requirements of the degree of Master of Philosophy Date September 2012 Supervisors A/Prof. Tim Stinear1 Dr. Torsten Seemann2 Prof. Richard Strugnell1 Department Microbiology and Immunology Faculty Medicine, Dentistry and Health Sciences The University of Melbourne 1. Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia 2. Victorian Bioinformatics Consortium, Monash University, Clayton, Australia MPhil_Thesis-22.doc Page 1 of 1 MPhil Thesis Ken Doig (197821835) Abstract Buruli ulcer is a neglected tropical disease which is prevalent in Western Africa. Its etiological agent, Mycobacteria ulcerans occurs in a wide range of hosts and environments across the world. In contrast to its progenitor Mycobacteria marinum, the bacteria and related strains produce a toxin mycolactone, an immunosuppressive polyketide which gives rise to its pathogenicity. Bacterial pathogenesis has a number of hallmarks such as; an evolutionary bottleneck, insertion sequence (IS) expansion, pseudogene increase, genome reduction, horizontal gene transfers (HGT) and adaption to a new niche. M. ulcerans shows all of these characteristics and is a fine model for gaining a deeper understanding of the mechanics of bacterial pathogenesis in general and specifically for M. ulcerans and related strains. This research analyses the genomic makeup of 35 isolates that produce mycolactone and five M. marinum isolates. Such analysis have recently become possible through the rapid technological development of high throughput sequencing (HTS) allowing whole genome sequences of all isolates to be compared and contrasted.
    [Show full text]
  • Table S3. Bootstrapped Frequency of COG Occurrences for Specific Metabolic Processes Encoded in the Antarctic Bacterioplankton Environmental Genomes
    Table S3. Bootstrapped frequency of COG occurrences for specific metabolic processes encoded in the Antarctic bacterioplankton environmental genomes. Category COG Predicted Protein WEG SEG Inorganic carbon COG1850 Ribulose 1,5-bisphosphate carboxylase, large subunit 4.34 0.85 COG4451 Ribulose bisphosphate carboxylase small subunit 1.19 0.83 COG0574 Phosphoenolpyruvate synthase/pyruvate phosphate dikinase 13.7 6.63 COG4770 Acetyl/propionyl-CoA carboxylase, alpha subunit 7.91 4.85 Sulfur Metabolism (inorganic) COG2897 Rhodanese-related sulfurtransferase 5.64 3.25 COG0607 Rhodanese-related sulfurtransferase 6.02 5.68 COG2895 GTPases - Sulfate adenylate transferase subunit 1 2.28 4.88 COG1054 Predicted sulfurtransferase 2.53 4.17 COG0306 Phosphate/sulphate permeases 7.56 3.27 COG0659 Sulfate permease and related transporters (MFS superfamily) 15.72 15.22 COG0529 Adenylylsulfate kinase and related kinases 1.98 4.16 COG0225 Peptide methionine sulfoxide reductase 7.03 3.22 COG0229 Conserved domain frequently associated with peptide methionine sulfoxide reductase 3.77 2.47 COG0641 Arylsulfatase regulator (Fe-S oxidoreductase) 0.67 0 COG0526 Thiol-disulfide isomerase and thioredoxins 6.99 4.12 COG1651 Protein-disulfide isomerase 10.75 1.65 COG2041 Sulfite oxidase and related enzymes 5.51 3.05 COG2046 ATP sulfurylase (sulfate adenylyltransferase) 4.34 3.46 COG2221 Dissimilatory sulfite reductase (desulfoviridin), alpha and beta subunits 1.21 0 COG2920 Dissimilatory sulfite reductase (desulfoviridin), gamma subunit 1.9 0 COG0155 Sulfite reductase,
    [Show full text]
  • Atoll Research Bulletin No
    ATOLL RESEARCH BULLETIN NO. 410 ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITWSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. FEBRUARY 1994 CHAPTER 12 MARINE MOLLUSCS OF THE COCOS (KEELING) ISLANDS Compared to other localities in the eastern Indian Ocean, the molluscs of the Cocos (Keeling) Islands were relatively well known prior to the Western Australian Museum survey in February 1989. Two short papers on the molluscs of the atolls were presented by Marratt (1879) and Rees (1950). A much more extensive list was prepared by Abbott (1950). Mrs. R.E.M. Ostheimer and Mrs. V.O. Maes spent the first two months of 1963 on Cocos collecting for the Academy of Natural Sciences of Philadelphia, as part of the International Indian Ocean Expedition. aes (1967) presented a complete list of the species collected, and included records of species recorded by Marratt (1879) or Abbott (1950) that she did not collect on the islands. A total of 504 species were recorded, 379 of which were identified to species. With their longer time on the atoll Maes and Ostheimer naturally collected more species than the Western Australian Musuem expedition, but their collections were primarily restricted to relatively shallow water as they did not scuba-dive. They did however do some dredging in the lagoon. The Museum team collected in many of the same localities as Maes and Ostheimer, but also dived in a number of areas. Because of this many of the species which live in deeper water that were recorded by only a few specimens by Maes (1967) were shown to in fact be common.
    [Show full text]
  • M # 1 Í T M 2 1
    Acta Zootaxonomica Sinica, 30 (2): 320- 329 (Apr., 2005) ISSN 1000-0739 M # 1 í t m 2 1. 266071 2. A iS tK A =4 IS A i í 116023 ÍS m ï|fï®!Îif4 Coralliophilidae M iïM & M > frlIÆ @ > #*8&Ï4. 4N44ift A f |f «tK g, ® m iPi}«Î44R SifP»4P íb#ÍSIgP #W ÄW JA^4P£iiPi4«*4, í& & m w % , «tèP23«>, t if 6i, äpw 1 v í p e r a s 4 g ^ a s P £«tiül #*8&í4, ífflí®il 14, fp p fpasL (» 5 9 . 212 IMÈM4 Coralliophilidae Chenu, 1859 m mjetbmmmûüp t t m * T B f f i H á ñ , m m m , u m m m M m w m í m ñ ^ ü ^ ñ o IIMPWM« ñPMHM, 4P E liíié ííi 100- 200 m tr .44 0414M 'M /RU M l i ñ o i t k ^ K 0 j t t u o « m m ïisjiéíbmpíít^ s ¡tijiÉj! J1 Babelomurex Coen, 1922 Type species: F usus bablies Requien, 1848. ± . M ílHiM tíM Iñ S?& $. Jllití ¡Hill Latiaxis Swainson, 1840 Type species: Pyrula mawae Griffith & Pidgecn, 1834. « j, i«]_hsKi«]0ji#M o i l Í Ü Ü J o m m m m , m m M - ñ f f io Ä ± 2 È.1 Babelomurex armatus (Sowerby, ñ 4 T H ñ 4 4 « o 1912) ( H3 2) Latiaxis armatus Sowerby, 1912. Ann. Mag. Mat. Hist., 8 ( 9 ) : 1 j|| ¡S ÈH Latiaxis mawae (Griffith & Pidgeon, 472 3, f. 2. 1834) (S i) Latiaxis (Babelomurex) japoniais (Dunker): Ma et Zhang, 1996.
    [Show full text]
  • 3. Supplementary Table S1
    3. Supplementary table S1 Table S1. GenBank accession numbers of additional, previously published cytochrome c oxidase subunit I (COI) sequences of the used in the Automatic Barcode Gap Discovery (ABGD) analysis, with the references to the original publication. All sequences belong to species of the muricid subfamily Coralliophilinae. Species GenBank accession numbers Referencesa Babelomurex cariniferus FN651934 1 Babelomurex spinosus FN651935 1 Coralliophila erosa FR853815 2 Coralliophila galeab U86331 3 Coralliophila meyendorffii EU870569, FN651936 4, 1 Coralliophila mira FN651937 1 Coralliophila monodontac FN651940 1 Coralliophila violacea FR853816 2 Latiaxis pilsbryi FN651938 1 Leptoconchus inactiniformis EU215826 5 Leptoconchus inalbechi EU215802, EU215803, EU215806–EU215808 5 Leptoconchus incrassa EU215804, EU215805 5 Leptoconchus incycloseris EU215812–EU215816, EU215861 5 Leptoconchus infungites EU215817–EU215820 5 Leptoconchus ingrandifungi EU215839, EU215843, EU215844, EU215852, EU215864, EU215865 5 Leptoconchus ingranulosa EU215821–EU215823 5 Leptoconchus inlimax EU215829–EU215833 5 Leptoconchus inpileus EU215840–EU215842 5 Leptoconchus inpleuractis EU215834–EU215838 5 Leptoconchus inscruposa EU215854–EU215855 5 Leptoconchus inscutaria EU215857–EU215859 5 Leptoconchus intalpina EU215845–EU215847, EU215860 5 Leptoconchus massini EU215809–EU215811, EU215827, EU215848–EU215851, EU215853 5 Leptoconchus vangoethemi EU215828, EU215862, EU215863 5 Leptoconchus sp. FN651939 1 Rapa rapa FN651941 1 a: 1: Barco et al., 2010; 2: Claremont et al., 2011; 3: Harasewych et al., 1997; 4: Puillandre et al., 2009; 5: Gittenberger and Gittenberger, 2011 b: Deposited in GenBank under the name Coralliophila abbreviata c: Deposited in GenBank under the name Quoyula monodonta References Barco A, Claremont M, Reid DG, Houart R, Bouchet P, Williams ST, Cruaud C, Couloux A, Oliverio M. 2010. A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods.
    [Show full text]
  • Modeling Seashells
    Modeling seashells z y Deborah R. Fowlery, Hans Meinhardt and Przemyslaw Prusinkiewicz yDepartment of Computer Science University of Calgary Alberta, Canada T2N 1N4 Department of Computer Science University of Regina Canada zMax-Planck-Institut fur¨ Entwicklungsbiologie 7400 Tubingen,¨ Germany From Proceedings of SIGGRAPH ’92 (Chicago, Illinois, July 26–31, 1992), In Computer Graphics, 26, 2, (July 1992), ACM SIGGRAPH, New York, pp. 379–387. For technical reasons, the formatting of this paper is slightly different from the original publication. Modeling seashells Deborah R. Fowler Hans Meinhardt Przemyslaw Prusinkiewicz Department of Computer Science Max-Planck-Institut Department of Computer Science University of Calgary fur¨ Entwicklungsbiologie University of Calgary and University of Regina 7400 Tubingen,¨ Germany Alberta, Canada T2N 1N4 Canada (Authors listed alphabetically) ABSTRACT characterization by d’Arcy Thompson [31], and a reaction-diffusion model of pigmentation patterns originated by Meinhardt [17]. The This paper presents a method for modeling seashells, suitable for results are evaluated by comparing models with the real shells. image synthesis purposes. It combines a geometric description Historically, the logarithmic spiral, capturing the essence of the of shell shapes with an activator-inhibitor model of pigmentation shell shape, was first described in 1638 by Descartes [31, page patterns on shell surfaces. The technique is illustrated using models 754] and applied to characterize shell coiling by Moseley [21]. By of selected shells found in nature. the beginning of the twentieth century, it was observed in many CR Categories: I.3.5 [Computer Graphics]: Computational Ge- artificial and organic forms [4]. Moseley’s characterization was ometry and Object Modeling: Curve, surface, solid and object supported experimentally and popularized by Thompson [31], who representation.
    [Show full text]
  • ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus
    ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus methanolicus.(Under the direction of Prof. Michael C. Flickinger). Bacillus methanolicus is a Gram-positive aerobic methylotroph growing optimally at 50-53 °C. Wild-type strains of B. methanolicus have been reported to secrete 58 g/l of L- glutamate in fed-batch cultures. Mutants of B. methanolicus created via classical mutangenesis can secrete 37 g/l of L-lysine, at 50 °C. The genes required for methylotrophyin B. methanolicus are encoded by an endogenous plasmid, pBM19 in strain MGA3, except for hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) which are encoded on the chromosome.It is a promising candidate for industrial production of chemical intermediates or amino acids from methanol. B. methanolicus employs the ribulose monophospate (RuMP) pathway to assimilate the carbon derived from the methanol, but enzymes that dissimilate carbon are not identified, although formaldehyde and formate were identified as intermediates by 13C NMR. It is important to understand how methanol is oxidized to formaldehyde and then, to formate and carbon dioxide. This study aims to elucidate the methanol dissimilation pathway of B. methanolicus. Growth rates of B. methanolicus MGA3 were assessed on methanol, mannitol, and glucose as a substrate. B. methanolicus achieved maximum growth rate, µmax, when growing on 25 mM methanol, 0.65±0.007 h-1, and it gradually decreased to 0.231±0.004 h-1 at 2Mmethanol concentration which demonstrates substrate inhibition. The maximum growth rates (µmax) of B. methanolicus MGA3 on mannitol and glucose are 0.532±0.002 and 0.336±0.003 h-1, respectively.
    [Show full text]
  • Planctomycetes Attached to Algal Surfaces: Insight Into Their Genomes
    MSc 2.º CICLO FCUP 2015 into Planctomycetes their Planctomycetes genomes attached attached to algal surfaces: Insight into to algal their genomes surfaces Mafalda Seabra Faria : Insight : Dissertação de Mestrado apresentada à Faculdade de Ciências da Universidade do Porto Laboratório de Ecofisiologia Microbiana da Universidade do Porto Biologia Celular e Molecular 2014/2015 Mafalda Seabra Faria Seabra Mafalda I FCUP Planctomycetes attached to algal surfaces: Insight into their genomes Planctomycetes attached to algal surfaces: Insight into their genomes Mafalda Seabra Faria Mestrado em Biologia Celular e Molecular Biologia 2015 Orientador Olga Maria Oliveira da Silva Lage, Professora Auxiliar, Faculdade de Ciências da Universidade do Porto Co-orientador Jens Harder, Senior Scientist and Professor, Max Planck Institute for Marine Microbiology FCUP II Planctomycetes attached to algal surfaces: Insight into their genomes Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP III Planctomycetes attached to algal surfaces: Insight into their genomes FCUP IV Planctomycetes attached to algal surfaces: Insight into their genomes “Tell me and I forget, teach me and I may remember, involve me and I learn.” Benjamin Franklin FCUP V Planctomycetes attached to algal surfaces: Insight into their genomes FCUP VI Planctomycetes attached to algal surfaces: Insight into their genomes Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisor Professor
    [Show full text]
  • [The Taiwan Malacofauna III. Ga
    The Taiwan Malacofauna 111. Gastropoda-Neogastropoda Wen-Lung Wu, Ph.D. Research Fellow and Professor of Zoology Institute of Zoology and Research Center for Biodiversity Academia Sinica Taipei 11 5 -29, TAIWAN Telephone : 02-27899547 - 02-27899553 Fax : 02-27899547 E-mail : [email protected] Web-site : http://shell.sinica.edutw Copyright 02003 by Council of Agriculture, Executive Yuan, TAIWAN 37, Nanhai Road, Taipei 100, TAIWAN Editorial Oflice Laboratory of Malacology Institute of Zoology and Research Center for Biodiversity Academia Sinica Taipei 11 5-29, TAIWAN On the Cover : Photograph of the Taiwan Neogastropods by Yen-Chen Lee and Wen-Lung Wu GPN : 1009204485 ISBN 957-01-5925-1 First published 2003 urn: .ttt $$EjWgg $$$I11 i!j$$#m-$fifl?jfg Family Buccinidae @a% Appisana crenilabrum (A. Adarns, 1855) R@j$Egmontrouzieri Crosse, 1862 o 3B*6 : EEbi&E-E%#%;./J\%f$ O g3fJ$gJgf: 200001 Aulacofusus insulapratasensis Okutani et Lan, 1994 %$$@kg +@** : jtEbi&E- gp?72+)lqF: E+mjgigi&a- %?$SE %+lag @fJ$gj& @fJ$gj& 000207 100279 * 100358 o Babylonia areolata (Link, 1807) %3Rk% 3@**: +$ggJ!l& ; jtgbi&E-BjtBjgig gmjgig : @iEBi&E-3+$$$@ @ ; @&Jji&E- $$?a:&@ * t&fljt%bgiig : $jgbi&E- @iE?gig&+ E$j@$@2EB@@&@+E*%T St&@@ E%#%%B; E +rn$@@i&E- B?$g& : &,%i&E-&FYj@@ O @3$2& : 0001 90 * 000224 - 000274 - 100263 * 100291 * 200001 * 200 114 * 200 118 o Babylonia areolata forma austraoceanensis %'@%3Rk% +$g*?fi E+m:&igi&E- E+rn$Ej @fJ$gJgf: 100291 o Babylonia feicheni Shikama, 1973 $EBRk% +$!$** : +$&@@O @fJ$gj& @fJ$gj& : 100263 - 100321 o Babylonia formosae habei Altena et Gittenber, 198 1 i;@"bjE$,@ 3$!$**: 3$g$&!l&@jtzbgiig; jtgbi&E - %jtBj@@- gmjgig O @fJ$gj& @fJ$gj& : 100263 o Babylonia formosae (Sowerby, 1866) 3@jjF&kg 3:@**: +:mg@ ; j tEbi&E- gJgJ#%@j@; js:$gi&E - $$?ajtgpgig : i&E-3BEE?@@7 &3%E$z$@3%%@@-@ 7 +%+iZ+ * Babylonia japonica (Reeve, 1842) El $E@ &Bfi;ffj: ltgLi&E - A tS; Ei%i&E - i%tEi@%7 ERA@J\EER o : 200001 Babylonia kirana Habe, 1965 &@fi;ffj: &~/&@ O @+gm : 100263 o Babylonia lutosa (Lamarck, 1822) %zjE%@ &$gfi;ffj: &mg@m;l t$L@fsfi .
    [Show full text]