The First Cytogenetic Map of the Tuatara, Sphenodon Punctatus
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
A Small Lepidosauromorph Reptile from the Early Triassic of Poland
A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians). -
A New Sphenodontian (Lepidosauria: Rhynchocephalia)
View metadata, citation and similar papersDownloaded at core.ac.uk from http://rspb.royalsocietypublishing.org/ on February 13, 2017 brought to you by CORE provided by CONICET Digital A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians rspb.royalsocietypublishing.org Ricardo N. Martı´nez1, Cecilia Apaldetti1,2, Carina E. Colombi1,2, Angel Praderio1, Eliana Fernandez1,2, Paula Santi Malnis1,2, 1,2 1 1 Research Gustavo A. Correa , Diego Abelin and Oscar Alcober 1Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, Avenida Espan˜a 400 Norte, Cite this article: Martı´nez RN, Apaldetti C, 5400 San Juan, Argentina Colombi CE, Praderio A, Fernandez E, Malnis 2Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, CONICET, Buenos Aires, Argentina PS, Correa GA, Abelin D, Alcober O. 2013 A new sphenodontian (Lepidosauria: Rhyncho- Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. cephalia) from the Late Triassic of Argentina Although evidence of extinction is seen at the end of the Laurasian Early and the early origin of the herbivore Cretaceous, they appeared to remain numerically abundant in South America opisthodontians. Proc R Soc B 280: 20132057. until the end of the period. Most of the known Late Cretaceous record in http://dx.doi.org/10.1098/rspb.2013.2057 South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. -
Programm Und Kurzfassungen – Program and Abstracts
1 Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie 29 Paläontologie im Blickpunkt 80. Jahrestagung der Paläontologischen Gesellschaft 5. – 8. Oktober 2010 in München Programm und Kurzfassungen – Program and Abstracts München 2010 Zitteliana B 29 118 Seiten München, 1.10.2010 ISSN 1612-4138 2 Editors-in-Chief/Herausgeber: Gert Wörheide, Michael Krings Mitherausgeberinnen dieses Bandes: Bettina Reichenbacher, Nora Dotzler Production and Layout/Bildbearbeitung und Layout: Martine Focke, Lydia Geissler Bayerische Staatssammlung für Paläontologie und Geologie Editorial Board A. Altenbach, München B.J. Axsmith, Mobile, AL F.T. Fürsich, Erlangen K. Heißig, München H. Kerp, Münster J. Kriwet, Stuttgart J.H. Lipps, Berkeley, CA T. Litt, Bonn A. Nützel, München O.W.M. Rauhut, München B. Reichenbacher, München J.W. Schopf, Los Angeles, CA G. Schweigert, Stuttgart F. Steininger, Eggenburg Bayerische Staatssammlung für Paläontologie und Geologie Richard-Wagner-Str. 10, D-80333 München, Deutschland http://www.palmuc.de email: [email protected] Für den Inhalt der Arbeiten sind die Autoren allein verantwortlich. Authors are solely responsible for the contents of their articles. Copyright © 2010 Bayerische Staassammlung für Paläontologie und Geologie, München Die in der Zitteliana veröffentlichten Arbeiten sind urheberrechtlich geschützt. Nachdruck, Vervielfältigungen auf photomechanischem, elektronischem oder anderem Wege sowie -
Vertebrates from the Late Triassic Thecodontosaurus-Bearing Rocks Of
Proceedings of the Geologists’ Association 125 (2014) 317–328 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Vertebrates from the Late Triassic Thecodontosaurus-bearing rocks of Durdham Down, Clifton (Bristol, UK) Davide Foffa *, David I. Whiteside, Pedro A. Viegas, Michael J. Benton School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK A R T I C L E I N F O A B S T R A C T Article history: Since the discovery of the basal sauropodomorph dinosaur Thecodontosaurus in the 1830s, the associated Received 12 October 2013 fauna from the Triassic fissures at Durdham Down (Bristol, UK) has not been investigated, largely Received in revised form 3 February 2014 because the quarries are built over. Other fissure sites around the Bristol Channel show that dinosaurs Accepted 7 February 2014 represented a minor part of the fauna of the Late Triassic archipelago. Here we present data on Available online 16 April 2014 microvertebrates from the original Durdham Down fissure rocks, which considerably expand the taxonomic diversity of the island fauna, revealing that it was dominated by the sphenodontian Keywords: Diphydontosaurus, and that archosauromorphs, including sphenosuchian crocodylomorphs, coelophy- Late Triassic soid theropods, and the basal sauropodomorph Thecodontosaurus, were diverse. Importantly, a few fish Fissure fills Archosaurs teeth provide new information about the debated age of the fissure deposit, which is identified as lower Sphenodontians Rhaetian. Thecodontosaurus had been assigned an age range over 20–25 Myr of the Late Triassic, so this Durdham Down narrower age determination (209.5–204 Myr) is important for studies of early dinosaurian evolution. -
Is the Tuatara (Sphenodon Punctatus) a Living Fossil? Palaeontology, 60(3), 319-328
Herrera Flores, J., Stubbs, T., & Benton, M. (2017). Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology, 60(3), 319-328. https://doi.org/10.1111/pala.12284 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/pala.12284 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ [Palaeontology, 2017, pp. 1–10] MACROEVOLUTIONARY PATTERNS IN RHYNCHOCEPHALIA: IS THE TUATARA (SPHENODON PUNCTATUS) A LIVING FOSSIL? by JORGEA.HERRERA-FLORES , THOMAS L. STUBBS and MICHAEL J. BENTON School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK; jorge.herrerafl[email protected], [email protected], [email protected] Typescript received 4 July 2016; accepted in revised form 19 January 2017 Abstract: The tuatara, Sphenodon punctatus, known from since the Triassic, rhynchocephalians had heterogeneous rates 32 small islands around New Zealand, has often been noted of morphological evolution and occupied wide mor- as a classic ‘living fossil’ because of its apparently close phospaces during the Triassic and Jurassic, and these then resemblance to its Mesozoic forebears and because of a long, declined in the Cretaceous. In particular, we demonstrate low-diversity history. This designation has been disputed that the extant tuatara underwent unusually slow lineage because of the wide diversity of Mesozoic forms and because evolution, and is morphologically conservative, being located of derived adaptations in living Sphenodon. -
(Lepidosauria: Rhynchocephalia) From
Proceedings of the Geologists’ Association 126 (2015) 402–416 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola A distinctive Late Triassic microvertebrate fissure fauna and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia) from Woodleaze Quarry, Gloucestershire, UK Catherine G. Klein *, David I. Whiteside, Victor Selles de Lucas, Pedro A. Viegas, Michael J. Benton School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK A R T I C L E I N F O A B S T R A C T Article history: During the Late Triassic and Early Jurassic, diverse terrestrial vertebrates were preserved in fissures Received 13 November 2014 formed in Carboniferous Limestone on an island archipelago spanning from the south of Wales to the Received in revised form 25 April 2015 north and south of Bristol. Here we report the faunas of two new fissures in Woodleaze quarry, near to Accepted 3 May 2015 Tytherington quarry, where the vertebrate fauna is already well known. The new site extends the lateral Available online 3 June 2015 distribution of fissures in this vicinity to over 900 m, and fissures sampled along that transect show a southerly change in the dominant species and a reduction in diversity. The Woodleaze fissure fauna is Keywords: nearly monofaunal, comprising >98% of a new Clevosaurus species, as well as some Diphydontosaurus Late Triassic fragments, a possible undescribed lepidosaur and a few fish fossils. The new clevosaur is distinguished Fissure fills Sphenodontians from the type species Clevosaurus hudsoni by its dentition, and by being smaller (average long bones are Clevosaurus 40–80% the length of C. -
Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus -
IS the TUATARA (SPHENODON PUNCTATUS) a LIVING FOSSIL? by JORGEA.HERRERA-FLORES , THOMAS L
[Palaeontology, 2017, pp. 1–10] MACROEVOLUTIONARY PATTERNS IN RHYNCHOCEPHALIA: IS THE TUATARA (SPHENODON PUNCTATUS) A LIVING FOSSIL? by JORGEA.HERRERA-FLORES , THOMAS L. STUBBS and MICHAEL J. BENTON School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK; jorge.herrerafl[email protected], [email protected], [email protected] Typescript received 4 July 2016; accepted in revised form 19 January 2017 Abstract: The tuatara, Sphenodon punctatus, known from since the Triassic, rhynchocephalians had heterogeneous rates 32 small islands around New Zealand, has often been noted of morphological evolution and occupied wide mor- as a classic ‘living fossil’ because of its apparently close phospaces during the Triassic and Jurassic, and these then resemblance to its Mesozoic forebears and because of a long, declined in the Cretaceous. In particular, we demonstrate low-diversity history. This designation has been disputed that the extant tuatara underwent unusually slow lineage because of the wide diversity of Mesozoic forms and because evolution, and is morphologically conservative, being located of derived adaptations in living Sphenodon. We provide a near the centre of the morphospace for all Rhynchocephalia. testable definition for ‘living fossils’ based on a slow rate of lineage evolution and a morphology close to the centroid of Key words: Rhynchocephalia, Sphenodontia, rates of evolu- clade morphospace. We show that through their history tion, living fossils, morphospace. T HE Rhynchocephalia is an ancient group of reptiles that geological time between the modern form and the young- emerged during the Early or Middle Triassic (Jones et al. est fossil forms, in the Miocene, Paleocene and Creta- 2013). -
Phylonyms; a Companion to the Phylocode
Lepidosauria E. Haeckel 1866 [K. de Queiroz and J. A. Gauthier], converted clade name Registration Number: 61 least 35 apomorphies relative to other extant amniotes (only some of which are diagnostic De!nition: !e smallest crown clade contain- relative to di#erent stem lepidosaurs). !ese ing Lacerta agilis Linnaeus 1758 (Squamata) and apomorphies derive from disparate anatomical Sphenodon (originally Hatteria) punctatus (Gray systems, are apparently unrelated functionally 1842) (Rhynchocephalia). !is is a minimum- and developmentally, and have persisted for crown-clade de"nition. Abbreviated de"nition: hundreds of millions of years among lepido- min crown ∇ (Lacerta agilis Linnaeus 1758 & saurs with remarkably divergent ecologies. !ey Sphenodon punctatus (Gray 1842)). include the following apomorphies (those lack- ing citations are from Gauthier et al., 1988a): Etymology: Derived from the Greek lepidos, (1) transversely oriented external opening of scale, plus sauros, lizard, reptile. cloaca and loss of amniote penis (hemipenes of squamatans are neomorphic); (2) kidney in tail Reference Phylogeny: Gauthier et al. base and adrenal gland suspended in gonadal (1988a: Fig. 13), where Lacerta agilis is part of mesentery (Gabe, 1970); (3) lingual prey pre- Squamata and Sphenodon punctatus is part of hension; (4) sagittal crest of scales projecting Rhynchocephalia. See also Gauthier (1984: Figs. from neck, body and tail; (5) scales composed 32–33), Evans (1984: Fig. 2, 1988: Figs. 6.1– of superimposed, rather than juxtaposed, amni- 6.2), Rest et al. (2003: Fig. 3), Hill (2005: Fig. 3), ote alpha keratin and reptilian phi keratin layers Evans and Jones (2010: Fig. 2.1), Crawford et al. (Maderson, 1985); (6) skin shed regularly in its (2012: Fig. -
A Distinctive Late Triassic Microvertebrate Fissure Fauna and A
Proceedings of the Geologists’ Association 126 (2015) 402–416 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola A distinctive Late Triassic microvertebrate fissure fauna and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia) from Woodleaze Quarry, Gloucestershire, UK Catherine G. Klein *, David I. Whiteside, Victor Selles de Lucas, Pedro A. Viegas, Michael J. Benton School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK A R T I C L E I N F O A B S T R A C T Article history: During the Late Triassic and Early Jurassic, diverse terrestrial vertebrates were preserved in fissures Received 13 November 2014 formed in Carboniferous Limestone on an island archipelago spanning from the south of Wales to the Received in revised form 25 April 2015 north and south of Bristol. Here we report the faunas of two new fissures in Woodleaze quarry, near to Accepted 3 May 2015 Tytherington quarry, where the vertebrate fauna is already well known. The new site extends the lateral Available online 3 June 2015 distribution of fissures in this vicinity to over 900 m, and fissures sampled along that transect show a southerly change in the dominant species and a reduction in diversity. The Woodleaze fissure fauna is Keywords: nearly monofaunal, comprising >98% of a new Clevosaurus species, as well as some Diphydontosaurus Late Triassic fragments, a possible undescribed lepidosaur and a few fish fossils. The new clevosaur is distinguished Fissure fills Sphenodontians from the type species Clevosaurus hudsoni by its dentition, and by being smaller (average long bones are Clevosaurus 40–80% the length of C. -
The Comparative Anatomy and Systematics of Mesozoxc Sphenodontidans
THE COMPARATIVE ANATOMY AND SYSTEMATICS OF MESOZOXC SPHENODONTIDANS XIAO-CHUN WU BIOLOGY DEPAR~~ENT McGILL UNIVERSITY, :I{ONTREAL QUEPEC, CAN!\DA A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy. @ XIAO-CHUN WU, 1991. ( PRBPACB ( This thesis is centred around an anatcmical study of the craniai osteoloqy of the Mesozoic sphenodontidans, Asiacephalosaurus wangi, Raro;ugalosaurus mcqilli, Dianosaurus petilus and HomoeosaurU3 maximiliani. The first two are newly discovered and have not been studied previously. The third, previously described only in a preliminary fashion, was misinterpreted as a protorosaur. Althouqh many specimens of H. maximiliani have been described (Cocude-Michel, 1963; Faber, 1981) since the species was first named by Meyer (1845), the newly exposed dorsal part of the skull of a new specimen has provided many new cranial features. Consequently, it was necessary to examine, draw and describe aIl of these sphenodontidans. The descriptions are aIl original and present a virtually complete picture of the cranial osteoloqy of these qenera for the first time. In addition, the different patterns of the middle ear apparatus of the Sphenodontida and the functional problems of the temporal reqion in the Lepidosauria have been considered. Although use is made of the literature to obtain backqround data, the conclusions drawn are oriqinal unless explicdtly stated otherwise. Finally, the detailed descriptions of the four qenera have permitted a reassessment of the phyloqeny of the Sphenodontlda. After revlewinq the llterature, original conclusions ara qiven. ( i ACKNOWLEDGEMENTS This study owns its existence to the supervision of Dr.