Phylonyms; a Companion to the Phylocode

Total Page:16

File Type:pdf, Size:1020Kb

Phylonyms; a Companion to the Phylocode Lepidosauria E. Haeckel 1866 [K. de Queiroz and J. A. Gauthier], converted clade name Registration Number: 61 least 35 apomorphies relative to other extant amniotes (only some of which are diagnostic De!nition: !e smallest crown clade contain- relative to di#erent stem lepidosaurs). !ese ing Lacerta agilis Linnaeus 1758 (Squamata) and apomorphies derive from disparate anatomical Sphenodon (originally Hatteria) punctatus (Gray systems, are apparently unrelated functionally 1842) (Rhynchocephalia). !is is a minimum- and developmentally, and have persisted for crown-clade de"nition. Abbreviated de"nition: hundreds of millions of years among lepido- min crown ∇ (Lacerta agilis Linnaeus 1758 & saurs with remarkably divergent ecologies. !ey Sphenodon punctatus (Gray 1842)). include the following apomorphies (those lack- ing citations are from Gauthier et al., 1988a): Etymology: Derived from the Greek lepidos, (1) transversely oriented external opening of scale, plus sauros, lizard, reptile. cloaca and loss of amniote penis (hemipenes of squamatans are neomorphic); (2) kidney in tail Reference Phylogeny: Gauthier et al. base and adrenal gland suspended in gonadal (1988a: Fig. 13), where Lacerta agilis is part of mesentery (Gabe, 1970); (3) lingual prey pre- Squamata and Sphenodon punctatus is part of hension; (4) sagittal crest of scales projecting Rhynchocephalia. See also Gauthier (1984: Figs. from neck, body and tail; (5) scales composed 32–33), Evans (1984: Fig. 2, 1988: Figs. 6.1– of superimposed, rather than juxtaposed, amni- 6.2), Rest et al. (2003: Fig. 3), Hill (2005: Fig. 3), ote alpha keratin and reptilian phi keratin layers Evans and Jones (2010: Fig. 2.1), Crawford et al. (Maderson, 1985); (6) skin shed regularly in its (2012: Fig. 2), Jones et al. (2013: Figs. 3–4), and entirety; (7) prefrontal braces skull roof on pal- Simões et al. (2018: Fig. 2). ate (Gauthier, 1994); (8) lacrimal bone largely con"ned to orbital rim; (9) maxilla broadly Composition: Lepidosauria is composed of contributes to ventral orbital margin (Gauthier, two primary crown clades: the New Zealand 1994); (10) marginal teeth attached super"cially endemic Sphenodon with one currently recog- to lingual surface of jaw (rather than in shal- nized extant species (Hay et al., 2010) and the low sockets; further modi"ed to more apical globally distributed Squamata with approxi- attachment in some taxa); (11) teeth lost from mately 10,078 currently recognized extant transverse process of pterygoid and from sphe- species (Uetz, 2016). See Squamata and Pan- noid bones (Gauthier et al., 1988b); (12) zygos- Squamata (this volume) for references regarding phene-zygantrum accessory intervertebral joints extinct species in those clades. Reviews of dis- formed from dorsal extensions of zygapophysial parate and diverse fossil rhynchocephalians can surfaces (see Petermann and Gauthier, 2018); be found in Jones et al. (2013), Apesteguía et al. (13) autotomic and regenerable tail (autotomy, (2014), and Bever and Norell (2017). but not regeneration, has also been reported in some captorhinids; LeBlanc et al., 2018); (14) all Diagnostic Apomorphies: According to non-ossifying cartilaginous parts of skeleton cal- Gauthier et al. (1988a), Lepidosauria has at cify during postnatal ontogeny; (15) neomorphic Lepidosauria ossi"cation centers in limb bone epiphyses that described as an agamid “lizard” (Gray, 1831, fuse to diaphyses near maximum adult size; 1842), S. punctatus was later separated from aga- (16) medial centrale larger than lateral central mids as Hatteriidae (Cope, 1864), and later still in wrist (Gauthier et al., 1988b); (17) radiale from “lizards” (and snakes) as Rhynchocephalia contacts 1st distal carpal or 1st metacarpal in within Squamata (Günther, 1867). Cope (1875) hand (Gauthier et al., 2012); (18) 4th metacar- furthered the separation, "rst, by not recog- pal shorter than 3rd (symmetrical metacarpals); nizing Squamata, second, by including the (19) fenestrate pelvic girdle; (20) posterodorsally extinct protorosaurs (i.e., Protorosaurus speneri) sloping ilium; (21) embryonic fusion between and rhynchosaurs (i.e., Rhynchosaurus articeps) anlage of lateral centrale and astragalus in tar- along with extant Sphenodon punctatus in his sus; (22) astragalus and calcaneum fused in Rhynchocephalia, and third, by interposing tur- adult (and lack a perforating foramen between tles (Testudines) between Rhynchocephalia and them as neurovascular system passes between “lizards” (and snakes) in his taxonomy. Cope tibia and "bula proximal to tarsus; Rieppel and (1889) later continued this trend by separating Reisz, 1999); (23) absence of separate 1st distal Rhynchocephalia and Squamata as taxa of equal tarsal in foot; (24) hooked 5th metatarsal—and rank (although the taxa were adjacent in his absence of discrete 5th distal tarsal presumably list). Distancing them further still, Cope (1900) incorporated into it—modi"ed to act as both a placed Rhynchocephalia and Squamata in sepa- ‘heel’ and a grasping ‘thumb’ enabling the 5th rate higher taxa, Archosauria and Streptostylica, toe to rotate 90° with respect to rest of the foot respectively, although his phylogenetic diagram according to Robinson (1975). (p. 160) had them closely related. In general, many late nineteenth and early to mid twen- Synonyms: All synonyms are approximate (not tieth century authors treated Sphenodon and phylogenetically de"ned). !e names that fol- Squamata (not always using that name) as rel- low were used after Sphenodon punctatus was atively distantly related among reptiles (e.g., "rst recognized (Gray, 1831, 1842) for taxa that Cope, 1875; Haeckel, 1895; Williston, 1917, explicitly included Sphenodon (sometimes as 1925), or at least considered Sphenodon closer Hatteria or Rhynchocephalus) and squamatans: to rhynchosaurs (and sometimes also to choris- Squamata of Gray (1845), partial (amphisbae- toderans) than to Squamata (e.g., Gadow, 1898, nians excluded); Saura of Gray (1845), partial 1901; Jaekel, 1911; Nopcsa, 1923; Romer, 1933, (amphisbaenians and snakes excluded); Lacertia 1945, 1956, 1966; Underwood, 1957; Kuhn, of Owen (1845), partial (snakes excluded); 1966). Dissolution of Cope’s idea that rhyn- Squamata of Cope (1864) and Günther (1867); chosaurs and “protorosaurs” are closely related Lacertilia of Cope (1864) and Huxley (1886), to Sphenodon began with Hughes’ (1968) study partial (snakes excluded); Saurii of Gegenbaur of the rhynchocephalian tarsus and culminated (1874, 1878), partial (snakes excluded). In in Carroll’s (1975) argument that characters most of these cases (except for Günther, 1867), traditionally used to unite Sphenodon punc- Sphenodon punctatus was considered nested tatus (and its legitimate fossil relatives) with within the taxon corresponding to Squamata. rhynchosaurs and “protorosaurs” are erroneous. Subsequent authors working in an explicitly Comments: Changing ideas about the rela- phylogenetic framework (Benton, 1982; Evans, tionship between Sphenodon punctatus and 1984; Gauthier, 1984; Carroll, 1985) presented Squamata have come nearly full circle. Originally evidence that rhynchosaurs and “protorosaurs” 1080 Lepidosauria (including Protorosaurus speneri and Prolacerta were considered most closely related among broomi) are related to archosaurs while Sphenodon extant taxa. !erefore, when rhynchosaurs punctatus is closer to squamatans. Gauthier were allied to Archosauria and evidence was et al. (1988a) provided extensive morphologi- presented for an exclusive relationship between cal evidence for a close relationship between Rhynchocephalia and Squamata, the name Sphenodon punctatus and Squamata based on a Lepidosauria was applied to the group includ- computer-assisted analysis of 171 characters in ing the latter two taxa (e.g., Benton, 1982, 1983, 13 taxa, and this result has been corroborated by 1985; Gardiner, 1982; Evans, 1984; Gauthier, subsequent studies based on morphology (e.g., 1984; Gauthier et al., 1988a; Pritchard and Evans, 1988; Hill, 2005; Evans and Jones, 2010; Nesbitt, 2017). Gauthier et al., 2012), molecules (e.g., Rest et al., Selection of the name Lepidosauria for the 2003; Crawford et al., 2012; Pyron et al., 2013), Sphenodon + Squamata clade is relatively straight- and combined morphological and molecular forward. Other names that have been applied data (e.g., Jones et al., 2013; Reeder et al., 2015; to a taxon composed of Sphenodon and squa- Simões et al., 2018). matans (see Synonyms) either have been little !e name Lepidosauria was proposed by used (Saura, Lacertia, Saurii) or have been more Haeckel (1866) for what is now known as commonly associated with a less inclusive clade Squamata—that is, “lizards” (a paraphyletic (Squamata) or a paraphyletic group originating group) and snakes. Although Sphenodon punc- in the same ancestor (Lacertilia as well as the tatus was not explicitly included, members of seldom-used names Saura, Lacertia, and Saurii). this taxon were originally thought to be “liz- !e name Lepidosauria was "rst de"ned ards” (e.g., Gray, 1831, 1842). After Günther’s phylogenetically by Gauthier et al. (1988a: (1867) study demonstrating major anatomical 34) as “the most recent common ancestor of di#erences between Sphenodon (as Hatteria) Sphenodon and squamates and all of its descen- and “lizards”, and the subsequent increas- dants.” We have updated that de"nition by ing taxonomic separation of these groups (see using species as speci"ers. In the context of phy- previous paragraph), the name Lepidosauria logenies in which
Recommended publications
  • An Intial Estimation of the Numbers and Identification of Extant Non
    Answers Research Journal 8 (2015):171–186. www.answersingenesis.org/arj/v8/lizard-kinds-order-squamata.pdf $Q,QLWLDO(VWLPDWLRQRIWKH1XPEHUVDQG,GHQWLÀFDWLRQRI Extant Non-Snake/Non-Amphisbaenian Lizard Kinds: Order Squamata Tom Hennigan, Truett-McConnell College, Cleveland, Georgia. $EVWUDFW %LRV\VWHPDWLFVLVLQJUHDWÁX[WRGD\EHFDXVHRIWKHSOHWKRUDRIJHQHWLFUHVHDUFKZKLFKFRQWLQXDOO\ UHGHÀQHVKRZZHSHUFHLYHUHODWLRQVKLSVEHWZHHQRUJDQLVPV'HVSLWHWKHODUJHDPRXQWRIGDWDEHLQJ SXEOLVKHGWKHFKDOOHQJHLVKDYLQJHQRXJKNQRZOHGJHDERXWJHQHWLFVWRGUDZFRQFOXVLRQVUHJDUGLQJ WKHELRORJLFDOKLVWRU\RIRUJDQLVPVDQGWKHLUWD[RQRP\&RQVHTXHQWO\WKHELRV\VWHPDWLFVIRUPRVWWD[D LVLQJUHDWIOX[DQGQRWZLWKRXWFRQWURYHUV\E\SUDFWLWLRQHUVLQWKHILHOG7KHUHIRUHWKLVSUHOLPLQDU\SDSHU LVmeant to produce a current summary of lizard systematics, as it is understood today. It is meant to lay a JURXQGZRUNIRUFUHDWLRQV\VWHPDWLFVZLWKWKHJRDORIHVWLPDWLQJWKHQXPEHURIEDUDPLQVEURXJKWRQ WKH $UN %DVHG RQ WKH DQDO\VHV RI FXUUHQW PROHFXODU GDWD WD[RQRP\ K\EULGL]DWLRQ FDSDELOLW\ DQG VWDWLVWLFDO EDUDPLQRORJ\ RI H[WDQW RUJDQLVPV D WHQWDWLYH HVWLPDWH RI H[WDQW QRQVQDNH QRQ DPSKLVEDHQLDQOL]DUGNLQGVZHUHWDNHQRQERDUGWKH$UN,WLVKRSHGWKDWWKLVSDSHUZLOOHQFRXUDJH IXWXUHUHVHDUFKLQWRFUHDWLRQLVWELRV\VWHPDWLFV Keywords: $UN(QFRXQWHUELRV\VWHPDWLFVWD[RQRP\UHSWLOHVVTXDPDWDNLQGEDUDPLQRORJ\OL]DUG ,QWURGXFWLRQ today may change tomorrow, depending on the data Creation research is guided by God’s Word, which and assumptions about that data. For example, LVIRXQGDWLRQDOWRWKHVFLHQWLÀFPRGHOVWKDWDUHEXLOW naturalists assume randomness and universal 7KHELEOLFDODQGVFLHQWLÀFFKDOOHQJHLVWRLQYHVWLJDWH
    [Show full text]
  • Controle Cardiovascular Autonômico E Metabolismo Em Embriões De Lagartos (Reptilia; Lepidosauria)
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” unesp INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE ZOOLOGIA (DOUTORADO) Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) MARINA RINCON SARTORI Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Área de Zoologia). Setembro - 2016 Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) MARINA RINCON SARTORI Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Área de Zoologia). Orientador: Augusto Shinya Abe Setembro - 2016 598.1 Sartori, Marina Rincon S251c Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) / Marina Rincon Sartori. - Rio Claro, 2016 141 f. : il., figs., gráfs., tabs., fots. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Augusto Shinya Abe 1. Réptil. 2. Regulação cardiovascular. 3. Desenvolvimento embrionário. 4. Iguana. 5. Squamata. 6. Frequência cardíaca. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Agradecimentos Um doutorado se resume a anos de dedicação e aprendizado. Nesse período há um grande amadurecimento, pessoal e profissional. E não é possível chegar até o fim sem o apoio e suporte de diversas pessoas, tanto as diretamente quanto as indiretamente envolvidas. Muitas não serão citadas nesta breve seção de agradecimentos mas a todos os que compartilharam comigo muitos desses momentos gostaria de deixar o meu sentimento de gratidão.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • February 2020 Issue
    THE FROG AND TADPOLE STUDY GROUP NSW Inc. Facebook: https://www.facebook.com/groups/FATSNSW/ Email: [email protected] PO Box 296 Rockdale NSW 2216 NEWSLETTER No. 165 FEBRUARY 2020 Frogwatch Helpline 0419 249 728 Website: www.fats.org.au ABN: 34 282 154 794 Photo by Jayden Walsh Crucifix Frog Notaden bennettii You are invited to our FATS meeting. It’s free. Everyone is welcome. Arrive from 6.30 pm for a 7pm start. Friday 7 February 2020 FATS meet at the Education Centre, Bicentennial Pk, Sydney Olympic Park Easy walk from Concord West railway station and straight down Victoria Ave. Take a torch in winter. By car: Enter from Australia Ave at the Bicentennial Park main entrance, turn off to the right and drive through the park. It’s a one way road. Or enter from Bennelong Rd / Parkway. It is a short stretch of two way road. th FATS meeting, Friday 7 February 2020 Park in P10f car park, the last car park before the Bennelong Rd. exit gate. 6.30 pm Lost Green Tree Frogs Litoria caerulea frogs and “friends” seeking forever homes: Priority to new pet frog owners. Please bring your membership card and cash $50 donation. CONTENTS PAGE Sorry, we don’t have EFTPOS. Your NSW NPWS amphibian licence must be sighted on the night. Adopted frogs can never Last meeting 2 be released. Please contact us first if you plan to adopt a frog. Corroboree poem by Giles Watson 3 We will confirm what frogs are ready to rehome. Vale John Diamond 7.00 pm Welcome and announcements Ourimbah FATS field trip, 4 7.45 pm Our main speaker is Jordan Crawford-Ash, from Australian notes from Josie Styles Museum.
    [Show full text]
  • The Giant Pliosaurid That Wasn't—Revising the Marine Reptiles From
    The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland DANIEL MADZIA, TOMASZ SZCZYGIELSKI, and ANDRZEJ S. WOLNIEWICZ Madzia, D., Szczygielski, T., and Wolniewicz, A.S. 2021. The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland. Acta Palaeontologica Polonica 66 (1): 99–129. Marine reptiles from the Upper Jurassic of Central Europe are rare and often fragmentary, which hinders their precise taxonomic identification and their placement in a palaeobiogeographic context. Recent fieldwork in the Kimmeridgian of Krzyżanowice, Poland, a locality known from turtle remains originally discovered in the 1960s, has reportedly provided additional fossils thought to indicate the presence of a more diverse marine reptile assemblage, including giant pliosaurids, plesiosauroids, and thalattosuchians. Based on its taxonomic composition, the marine tetrapod fauna from Krzyżanowice was argued to represent part of the “Matyja-Wierzbowski Line”—a newly proposed palaeobiogeographic belt comprising faunal components transitional between those of the Boreal and Mediterranean marine provinces. Here, we provide a de- tailed re-description of the marine reptile material from Krzyżanowice and reassess its taxonomy. The turtle remains are proposed to represent a “plesiochelyid” thalassochelydian (Craspedochelys? sp.) and the plesiosauroid vertebral centrum likely belongs to a cryptoclidid. However, qualitative assessment and quantitative analysis of the jaws originally referred to the colossal pliosaurid Pliosaurus clearly demonstrate a metriorhynchid thalattosuchian affinity. Furthermore, these me- triorhynchid jaws were likely found at a different, currently indeterminate, locality. A tooth crown previously identified as belonging to the thalattosuchian Machimosaurus is here considered to represent an indeterminate vertebrate.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]