Size Reduction by Crushing Methods

Total Page:16

File Type:pdf, Size:1020Kb

Size Reduction by Crushing Methods See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315487098 SIZE REDUCTION BY CRUSHING METHODS Technical Report · March 2017 DOI: 10.13140/RG.2.2.28195.45606 CITATION READS 1 12,303 1 author: A. Balasubramanian University of Mysore 361 PUBLICATIONS 424 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Geochemical Modelling of Groundwater for Prevention of Incrustation in the Water Supply Systems of Salem, Tamil Nadu, India View project GEOCHEMICAL MODELLING OF GROUNDWATER FOR PREVENTION OF INCRUSTATION IN THE WATER SUPPLY SYSTEMS OF SALEM DISTRICT, TAMIL NADU, INDIA View project All content following this page was uploaded by A. Balasubramanian on 22 March 2017. The user has requested enhancement of the downloaded file. SIZE REDUCTION BY CRUSHING METHODS By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore Objectives: In the field of extractive metallurgy, mineral dressing is the process of separating commercially valuable minerals from their ores. There are two major categories of processing. One is comminution and the other one is separation. The process "Comminution" involves size reduction and size-wise classification called as screening or separation. The objective of this lesson is to provide the details of size reduction methods involved in mineral processing using crushing equipments. Crushing is the first step of mineral processing where the ore/rocks from the mine site is fed into the mechanical equipment in order to reduce the size of masses for subsequent usage by liberating the valuable mineral from the gangue. 1.0 Introduction: Mineral processing can involve four general types of unit operations. They are: 1) comminution – the process of particle size reduction; 2) sizing – separation of particle sizes by screening or classification; 3) concentration by taking advantage of physical and surface chemical properties; and 4) dewatering – solid/liquid separation. Size Reduction is mainly done through crushers and mills. Crushing and grinding are the two primary comminution processes. Crushing is normally carried out on the "run-of-mine" ore. The grinding process which is normally carried out after crushing, may be conducted on dry or slurried material. 2.0 The size reduction process: Minerals being crystals have a tendency to break into endless numbers of sizes and shapes every time they are introduced to energy. The difficulty in size reduction lays in the art of limiting the number of over and under sizes produced during the reduction. If this is not controlled, the mineral will follow its natural crystal behaviour, normally ending up in over-representation of fines. 3.0 Comminution Comminution is particle size reduction of materials. Comminution may be carried out on either dry materials or slurries. Crushing and grinding are the two primary comminution processes. Crushing is normally carried out on "run-of-mine" ore, while grinding (normally carried out after crushing) may be conducted on dry or slurried material. In comminution, the size reduction of particles is done by three types of forces: compression, impact and attrition. 3.1 Compression and impact forces are extensively used in crushing operations while attrition is the dominant force in grinding. The primarily used equipment in crushing are-jaw crushers, gyratory crushers and cone crushers whereas rod mills and ball mills, closed circuited with a classifier unit, are generally employed for grinding purposes in a mineral processing plant. Crushing is a dry process whereas grinding is generally performed wet and hence is more energy intensive. Crushing is done using mechanical crushers. There are several types of crushers available in processing. 1 All crushers have a limited reduction ratio meaning that size reduction will take place in stages. 3.2 Operation stages: The operating stages in minerals processing have remained the same for several years. In this, the hard, abrasive and inhomogeneous mineral crystals are o be treated in special ways in order to extract maximum value out of each size fraction. The following diagram shows the stages in operation of size reduction from crushing to upgrading. 3.3 Crushing of rock and minerals: Crushing is the largest process operation in minerals processing. The goal of this process is to produce rock or (more seldom) mineral fractions to be used as raw material for other industrial production. The quality parameters are normally strength, size and shape. There are two kinds of equipments used for crushing works. one is by using crushers and other one is by using impactors. This diagram illustrates the stages of size reduction from 1000mm to 4 mm. 2 Size reduction of ores is normally done in order to liberate the value minerals from the host rock. This means that we must reach the liberation size, normally in the interval 100 – 10 micron, see value curve 1 above. 3.4 Feed material: All operations in size reduction, both crushing and grinding are of course determined by the feed characteristics of the minerals (rock/ore) moving into the circuit. The key parameters we need are the “crushability or grindability”, also called work index and the “wear profile”, called abrasion index. 4.0 Crushing of rock and minerals: Crushing is the largest process operation in minerals processing. The goal is to produce rock or (more seldom) mineral fractions to be used as rock fill or ballast material for concrete and asphalt production. Quality parameters are normally strength, size and shape. The kinds of materials processed are Limestone, Granite, Gabbro, Basalt, River Stone, Coal Gangue, Quartz, Diabase, Iron Ore, Copper Ore, Zinc Ore and Manganese Ore. 4.1 The art of crushing: Crushing means different things for different operations and the production goals are not always equal. In Mineral dressing, these two approaches are adopted: 1. Crushing of rock and gravel 2. Crushing of ore and minerals. There are three stages in crushing as stage 1, 2 and 3. In each stage the reduction in size ranges as referred to as R1,R2 and R3. This diagram illustrates the stages with equipments and reduction ratios. From 1000mm to 100 micron levels the mass is crushed. 3 4.2 Size control: Neither crushers nor grinding mills are very precise when it comes to the correct sizing of the end products. The reason is to find partly in the variation of the mineral crystals compounds (hard-soft, abrasive – non abrasive), partly in the design and performance of the equipment. Size control is the tool for improvement of the size fractions in the process stages and in the final products. For the coarser part of the process, screens are used (in practise above 1-2 mm). In the finer part we have to use classification with spiral classifiers. 5.0 Types of Crushers: A crusher is a machine designed to reduce large rocks into smaller rocks, gravel, or rock dust. Crushers may be used to reduce the size, or change the form, of waste materials so they can be more easily disposed of or recycled, or to reduce the size of a solid mix of raw materials (as in rock ore), so that pieces of different composition can be differentiated. Crushing is the process of transferring a force amplified by mechanical advantage through a material made of molecules that bond together more strongly, and resist deformation more, than those in the material being crushed do. Crushing devices hold material between two parallel or tangent solid surfaces, and apply sufficient force to bring the surfaces together to generate enough energy within the material being crushed so that its molecules separate from (fracturing), or change alignment in relation to (deformation), each other. 5.1 Jaw crusher A jaw crusher is generally used as a primary crusher in a crushing circuit. Product is fed into the top of the jaw crusher by an vibrating grizzly feeder. The eccentric rotating drive shaft causes the movable jaw to oscillate crushing the aggregate against a fixed jaw. Jaw crushers are run on belt drives driven by an electric motor or diesel engine. Jaw crushers are used extensively throughout the aggregate and mineral processing industry. This diagram illustrates the structure of a jaw crusher. Operating principle: Jaw crushers operate according to the principle of pressure crushing. The crushing material is crushed in the wedge-shaped pit between the fixed crusher jaw and the crusher jaw articulated on an eccentric shaft. The material is crushed by the elliptic course of movement and transported downwards. This occurs until the material is smaller than the set crushing size. The feed cavity of the Jaw Crusher consist of moveable jaw and fixed jaw, which imitate the movement of the animal’s two jaws to complete the materials’ crushing . Jaw Crushers have found their extensive application for the mid crushing of the various ores and large-size materials block in the field of mining, smelting, building material, highway, railway, water conservancy and chemical industry, etc 4 5.2 Gyratory crusher : A gyratory crusher is similar in basic concept to a jaw crusher, consisting of a concave surface and a conical head; both surfaces are typically lined with manganese steel surfaces. The inner cone has a slight circular movement, but does not rotate; the movement is generated by an eccentric arrangement. As with the jaw crusher, material travels downward between the two surfaces being progressively crushed until it is small enough to fall out through the gap between the two surfaces. The gyratory crushers are robust crushers with modern features. They are designed to give optimal capacity in primary crushing, increasing the total capacity in the mining crushing process. These crushers have a large feed opening and a grooved mantle, making them suitable for crushing large boulders.
Recommended publications
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Chapter 11: Beneficiation
    CHAPTER 11 Beneficiation – Comminution Sponsored by: SPONSOR PROFILE Through pioneering the introduction of modern process • project controls and reporting plants and associated technologies to remote and logistically • contract management challenging locations, Lycopodium Minerals Pty Ltd has • procurement and logistics management developed a successful track record in developing and • inspection and expediting commissioning major resource projects worldwide. • quality assurance/quality control Since its establishment in 1992, Lycopodium has become a • financial evaluations leading international engineering and project management • client representation. consultancy, with an enviable reputation for providing Engineering technically innovative and cost-effective engineering solutions. They are focused on the evaluation and development of projects • Conceptual through to detailed design in the fields of minerals processing, materials handling and • across all disciplines: earthworks, civil infrastructure. • structural, mechanical, piping • electrical, instrumentation, control Lycopodium Minerals has undertaken studies and projects across a broad range of commodities including gold (free, • systems, automation and infrastructure. gravity, refractory, preg robbing), base metals (concentrators, Process hydrometallurgy), iron ore, uranium, rare earths and industrial minerals. Their resume of projects reflects diversity in not • Metallurgical test work design only commodity, but client background, technology, scale of • management and interpretation
    [Show full text]
  • Sand, Gravel, and Crushed Stone On-The-Job Training Modules
    SAND, GRAVEL, AND CRUSHED STONE ON-THE-JOB TRAINING MODULES Module 17 - “Primary Crushing Operation” UNITED STATES DEPARTMENT OF LABOR ELAINE L. CHAO SECRETARY MINE SAFETY AND HEALTH ADMINISTRATION DAVE D. LAURISKI ASSISTANT SECRETARY Originally Published AUGUST 2000 INSTRUCTION GUIDE SERIES MSHA IG 40 MODULE NUMBER 17 OF INSTRUCTION GUIDE NUMBER 40 ON-THE-JOB TRAINING FOR THE SAND, GRAVEL, AND CRUSHED STONE INDUSTRY PRIMARY CRUSHING OPERATION This module describes basic job steps, potential hazards and accidents, and recommended safe job procedures for primary crushing operations. This job is normally done by the crusher operator, but may be done by other occupations. Crusher operators must protect themselves, and other people in the area, from accidents and injuries resulting from operation of the crusher and associated equipment. There are several different types of primary crushers, however, there are many similarities in the job clxii procedures followed by crusher operators. Crushing is the first step in converting shot rock into usable products. Essentially, crushing is no more than taking large rocks and reducing them to small pieces. Crushing is sometimes continued until only fines remain. At some operations, all the crushing is accomplished in one step, by a primary crusher. At other operations, crushing is done in two or three steps, with a primary crusher that is followed by a secondary crusher, and sometimes a tertiary crusher. Raw material, of various sizes, is brought to the primary crusher by rear-dump haul units, or carried by a wheel front-end loader. Primary crushing reduces this run-of-mine rock to a more manageable size.
    [Show full text]
  • Effect of Comminution Method on Particle Damage and Breakage Energy
    EFFECT OF COMMINUTION METHOD ON PARTICLE DAMAGE AND BREAKAGE ENERGY Michael Moats, Jan Miller, Chen-Lun Lin and Raj Rajamani Department of Metallurgical Engineering University of Utah Outline • Our Department • High Pressure Grinding • Particle Damage Characterization • Breakage Energy • Application to Simulant Development Department of Metallurgical Engineering • University of Utah is located in Salt Lake City along the Wasatch Mtns. • Only stand alone Metallurgical Engineering department remaining in the U.S. • Traditional curriculum with critical mass of professors – Mineral Processing – Chemical Metallurgy – Physical Metallurgy High Pressure Grinding Rolls (HPGR) HPGR consists of a pair of counter rotating rolls, one fixed and the other floating. The feed is introduced to the gap in between the rolls and they compress the bed of particles. The grinding force applied to the crushing zone is controlled by a hydro-pneumatic spring on the floating roll. Speeds of the rolls are also adjustable to obtain optimum grinding conditions. Comparison of HPGR and AG/SAG Mills Aspect HPGR AG/SAG Mill Grinding Mechanism Inter-particle compression Impact, attrition and compression Residence Time Low-single pass High (feed migrates through length of mill) Wet/Dry Grinding Dry-Low moisture Predominantly wet milling Availability >90% -2-4 change outs pa >90% -1-2 change outs pa Size regulated feed Required Yes-strongly affects stud breakage AG-No, SAG-Sometimes Critical material size Not required Required Product particle Yes (beneficial for downstream Negligible micro-cracking processes Maximum Throughput 2000tph 4000tph Footprint Small Large Specific power 1-5kWh/t 5-12kWh/t Operating cost Overall plant 20% lower Overall plant 20% higher Capital Cost 25% lower 25% higher Delivery time Substantially faster Substantially longer Variation in feed hardness Single parameter variable High losses •Reference: Koenig, R.L.
    [Show full text]
  • Redesign and Fabrication of Hammer Milling Machine for Making Pasta
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.03, pp 202-218, 2019 Redesign and Fabrication of Hammer Milling Machine for Making Pasta Workalemahu Manaye1, Beruk Hailu1,T Ashokkumar1*, 1Department of Mechanical Engineering, Institute of Technology, Haramya University, P.O Box 138, Dire Dawa, Ethiopia. Abstract : This study Aimed to redesign a Hammer mill machine for grinding,owing to the inability of existing mill to meet the demand of waste pastaflourin Dire Dawa food Complex. Rational design by drawing and calculations and Simulation in solid works. CAD software were used to bring this milltoreality. The modified pasta grinding milling machine efficiency will be 90%..Waste of Pasta, Macaroni, Biscuits, or Breads and there by impact cost of production through minimizing waste as well as inquests safe, hygienic & efficient way of grinding these by products at Dire Dawa food complex. Key words : Pasta Grinding, Solidwork, Belt Drive, Design. 1.Introduction Hammermills are more widely used in feed mills because they are easier to operate and maintain and produce particles spherical in shape (Kim et al., 2002; Amerah et al., 2007). To increase production capacity of hammer mills, they are equipped with an air-assist system that draws air into the hammer mill with the product to be ground, thus allowing particles to exit through screen holes (Kim et al., 2002).Hammer mills have been reported to produce a wide range of particle sizes compared to roller mills (Seerley et al., 1988; Douglas et al., 1990; Audet, 1995). During roller milling each grain passes through the mill independently of surrounding grains (Campbell et al., 2001).
    [Show full text]
  • Mineral Engineering & Fuel Technology
    MINERAL ENGINEERING & FUEL TECHNOLOGY (MME-203) 4th Semester B. Tech Dept. of Metallurgical and Materials Engineering V.S.S.university of Technology , Burla Sambalpur , odisha Person Name Designation Department involved And Email .id Course Gautam Assistant MME coordinator Behera professor [email protected] Course Co- Dinesh Assistant MME coordinator ku professor mishra , [email protected] Course Co- Avala Assistant MME coordinator Lava professor kumar [email protected] Goals of the subject 1-To impart knowledge about Mineral Processing [fundamental knowledge] 2-To teach you to “think” rather than “cook” 3-To encourage you to consider a career path in Mineral Processing Content Introduction to mineral processing(Engineering) Crushing and grinding Size separation methods Concentration methods Agglomeration techniques Fuel technology MODULE -I Introduction to mineral and mineral Engineering Mineral- a substance from which we get metal non metals or any valuables. Mineral Engineering ( branch of mme which deals with study of minerals and its processing )where the minerals is being processed to get a concentrate from which metals are extracted . Flow chat to show the relationship of mineral engineering with mining and extractive metallurgy engineering Subject covers Minerals definition MINERAL : Natural occur inorganic aggregate of metals and non metals . Or Inorganic compound having a definite chemical composition and crystal structure (atomic structure). Or minerals are the forms in which metals are found in the earth crust and as sea bed deposit depend on their reactivity with their environment, particular with oxygen , sulphur, and co2. Anything of economical value which is extracted from the earth. Characteristic of mineral 1-Minerals are homogeneous in physical and chemical composition.
    [Show full text]
  • Crushing Resource Book
    Metalliferous Mining - Processing Crushing Resource Book C R U S H I N G Table of Contents TABLE OF CONTENTS............................................................................................................................2 INTRODUCTION TO CRUSHING .....................................................................................................................3 What is this module about?.....................................................................................................................3 What will you learn in this module? .......................................................................................................3 What do you have to do to complete this unit? .......................................................................................3 What resources can you use to help?......................................................................................................3 INTRODUCTION TO COMMINUTION ................................................................................................4 CRUSHING THEORY ...............................................................................................................................5 CRUSHING EQUIPMENT AND CRUSHING CIRCUITS.................................................................... 9 CRUSHING EQUIPMENT ...............................................................................................................................9 CRUSHING CIRCUITS AND STAGING ..........................................................................................................
    [Show full text]
  • Extractive Metallurgy & the Smelting of Bronze
    Extractive Metallurgy & the Smelting of Bronze INTRODUCTION: Seven metals were in use before the invention of writing: gold, silver, copper, iron, mercury, tin & lead. Many of these are so scarce they couldn’t be used practically (like gold). Others are rarely found in their elemental form, instead found as minerals of carbonates, oxides, or sulfides. It is the elemental form of metals that we are familiar with when we speak of their shiny, malleable and conducting properties. As minerals or ores, metals exist in combination with other elements, often as brittle, non-conducting substances (image rocks, salts & crystals). To produce a metal in its elemental form from an ore requires a chemical transformation, a process of extractive metallurgy called smelting. The fundamental problem of smelting involves the chemical reduction of metallic compounds to elemental metals, with different compounds requiring different treatment conditions. Oxide or carbonate ores are heated with charcoal, which combines with the oxygen in the ore, to release carbon dioxide and produce the elemental metal. 2 Cu3(CO3)2(OH)2 + 3 C → 6 Cu + 7 CO2 + 2 H2O (1) SnO2 + C → Sn + CO2 (2) Copper was the earliest metal to come into common usage because its ores are fairly common, like that of malachite (Cu2CO3(OH)2), and because it can be smelted at moderate temperatures (see equation 2 above). It is a soft metal, however, which makes it of marginal value for tools and weapons. Tin forms an alloy with copper, called bronze, which is harder than either metal alone. By 3,000 BC bronze had become the dominant metal, so much so that its use defines the Bronze Age.
    [Show full text]
  • In the United States District Court for the Southern District of Indiana
    Case 1:15-cv-00433-TWP-TAB Document 1 Filed 03/16/15 Page 1 of 20 PageID #: 1 IN THE UNITED STATES DISTRICT COURT FOR THE SOUTHERN DISTRICT OF INDIANA UNITED STATES OF AMERICA ) and the ) STATE OF INDIANA, ) ) Plaintiffs, ) ) ) Civil Action No. 15-cv-433 v. ) ) ) EXIDE TECHNOLOGIES ) (d/b/a EXIDE TECHNOLOGIES, INC.), ) ) ) ) Defendant. ) ) COMPLAINT The United States of America, by the authority of the Attorney General of the United States acting at the request of the Administrator of the United States Environmental Protection Agency (“EPA”), and the State of Indiana (“Indiana”), by the authority of the Indiana Attorney General, acting at the request of the Indiana Department of Environmental Management (“IDEM”), hereby file this Complaint and allege as follows: NATURE OF ACTION 1. This is a civil action brought against Exide Technologies (referred to herein as “Exide” or the “Defendant”) pursuant to the Clean Air Act, 42 U.S.C. § 7401 et seq. and the laws of Indiana. This action seeks civil penalties and injunctive relief for violation of certain requirements under the Clean Air Act and its implementing regulations, as well as corresponding requirements of Indiana law, at a secondary lead smelting facility that Exide owns and operates at 2601 West Mount Pleasant Boulevard, Muncie, Indiana (the “Facility”). Indiana’s authority to Case 1:15-cv-00433-TWP-TAB Document 1 Filed 03/16/15 Page 2 of 20 PageID #: 2 seek injunctive relief and civil fines with respect to the Facility derives not only from the Clean Air Act, but also Indiana Code (“Ind.
    [Show full text]
  • Milling Studies in an Impact Crusher I: Kinetics Modelling Based on Population Balance Modelling
    minerals Article Milling Studies in an Impact Crusher I: Kinetics Modelling Based on Population Balance Modelling Ngonidzashe Chimwani 1,* and Murray M. Bwalya 2 1 Institute of the Development of Energy for African Sustainability (IDEAS), Florida Campus, University of South Africa (UNISA), Private Bag X6, Johannesburg 1710, South Africa 2 School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-731838174 Abstract: A number of experiments were conducted on a laboratory batch impact crusher to investi- gate the effects of particle size and impeller speed on grinding rate and product size distribution. The experiments involved feeding a fixed mass of particles through a funnel into the crusher up to four times, and monitoring the grinding achieved with each pass. The duration of each pass was approximately 20 s; thus, this amounted to a total time of 1 min and 20 s of grinding for four passes. The population balance model (PBM) was then used to describe the breakage process, and its effectiveness as a tool for describing the breakage process in the vertical impact crusher is assessed. It was observed that low impeller speeds require longer crushing time to break the particles significantly whilst for higher speeds, longer crushing time is not desirable as grinding rate sharply decreases as the crushing time increases, hence the process becomes inefficient. Results also showed that larger particle sizes require shorter breakage time whilst smaller feed particles require longer breakage time. Keywords: impact crusher; comminution; milling parameters; population balance mode Citation: Chimwani, N.; Bwalya, M.M.
    [Show full text]
  • I. Principles of Extractive Metallurgy
    I. PRINCIPLES OF EXTRACTIVE METALLURGY RAKES H KUMAR Email : [email protected] Extractive metallurgy as a discipline deals with the extraction of metals from naturally occurring and man made resources. Separation is the essence of metal extraction. Development of efficient separation schemes calls for a through understanding of extractive metallurgy principles in terms of physical chemistry (thermodynamics & kinetics); materials and energy flow/balance, transport phenomena, reactor and reactor engineering, instrumentation and process control, and environment and waste management. (Slide 1-4) In general, metallurgical separation processes involves chemical reactions, and classified as pyrometallurgical, hydrometallurgical, and electrometallurgical. The processes are also classified as ferrous [dealing with iron and steel] and nonferrous [dealing with all other metals, e.g. base metals (like Cu, Pb, Zn, Ni, ...), light metals (Al, Mg, Ti), precious metals (Au, Ag, Pt, Pd, ...), rare earth (Ce, Nd, Sm, ...), nuclear metals (U, Th, ...), rare metals (Os, Ru, ...) etc]. (Slide 6) Various pyrometallurgical unit processes are: calcination, roasting, smelting, converting, refining, distillation etc. Each of these processes serves a specific purpose from the point of view of separation. They require specialized reactor depending upon the phases (solid/liquid/ gases) involved, mode of contact, temperature, environmental measures etc Calcination and roasting are used as pre-treatment prior to other pyro- and hydro- metallurgical operations. (Slide 7, 8) Smelting is the most common of pyrometallurgical operations. Reduction smelting is carried out for oxides. During the smelting, metal compound (e.g. oxide of metal) is reduced to metallic form, and the undesirable impurities (gangue) combine with flux to form slag. Immiscibility of metal and slag together with density difference forms the basis for separation.
    [Show full text]
  • Avoiding Slopping in Top-Blown BOS Vessels
    ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SI S Department of Chemical Engineering and Geosciences Division of Extractive Metallurgy Mats Brämming Avoiding Slopping in Top-Blown BOS Vessels BOS Top-Blown Slopping in Mats Brämming Avoiding ISSN: 1402-1757 ISBN 978-91-7439-173-2 Avoiding Slopping Luleå University of Technology 2010 in Top-Blown BOS Vessels Mats Brämming Avoiding Slopping in Top-blown BOS Vessels Mats Brämming Licentiate Thesis Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Extractive Metallurgy SE-971 87 Luleå Sweden 2010 Printed by Universitetstryckeriet, Luleå 2010 ISSN: 1402-1757 ISBN 978-91-7439-173-2 Luleå 2010 www.ltu.se To my fellow researchers: “Half a league half a league, Half a league onward, All in the valley of Death Rode the six hundred: 'Forward, the Light Brigade! Charge for the guns' he said: Into the valley of Death Rode the six hundred. 'Forward, the Light Brigade!' Was there a man dismay'd ? Not tho' the soldier knew Some one had blunder'd: Theirs not to make reply, Theirs not to reason why, Theirs but to do & die, Into the valley of Death Rode the six hundred.” opening verses of the poem “The Charge Of The Light Brigade” by Alfred, Lord Tennyson PREFACE Slopping* is the technical term used in steelmaking to describe the event when the slag foam cannot be contained within the process vessel, but is forced out through its opening. This phenomenon is especially frequent in a top-blown Basic Oxygen Steelmaking (BOS) vessel, i.e.
    [Show full text]