C. Aprica – C. Langae (Porifera, Hadromerida, Clionaidae)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Distinguishing Characteristics of Sponges
Distinguishing characteristics of sponges Continue Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. You are here: Home / Uncategorized / Characteristics of sponges: BTW, They are animals, NOT plants! Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. Almost all of us are familiar with commercial sponges, which are used for various purposes, such as cleaning. There are several living sponges found in both seawater as well as fresh water. These living species are not plants, but are classified as porifera animals. The name of this branch is derived from the pores on the body of the sponge, and it means the bearer of pores in Greek. It is believed that there are about 5000 to 10,000 species of sponges, and most of them are found in seawater. So sponges are unique aquatic animals with some interesting characteristics. Would you like to write to us? Well, we are looking for good writers who want to spread the word. Get in touch with us and we'll talk... Let's work together! Sponges are mainly found as part of marine life; but, about 100 to 150 species can be found in fresh water. They may resemble plants, but are actually sessile animals (inability to move). Sponges are often found attached to rocks and coral reefs. You can find them in different forms. While some of them are tube-like and straight, some others have a fan-like body. Some are found as crusts on rocks. -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
Review on Hard Coral Recruitment (Cnidaria: Scleractinia) in Colombia
Universitas Scientiarum, 2011, Vol. 16 N° 3: 200-218 Disponible en línea en: www.javeriana.edu.co/universitas_scientiarum 2011, Vol. 16 N° 3: 200-218 SICI: 2027-1352(201109/12)16:3<200:RHCRCSIC>2.0.TS;2-W Invited review Review on hard coral recruitment (Cnidaria: Scleractinia) in Colombia Alberto Acosta1, Luisa F. Dueñas2, Valeria Pizarro3 1 Unidad de Ecología y Sistemática, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. 2 Laboratorio de Biología Molecular Marina - BIOMMAR, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, D.C., Colombia. 3 Programa de Biología Marina, Facultad de Ciencias Naturales, Universidad Jorge Tadeo Lozano. Santa Marta. Colombia. * [email protected] Recibido: 28-02-2011; Aceptado: 11-05-2011 Abstract Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles) into a population, is a fundamental process for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coral populations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal and maintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect) and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness) and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
Article (Published Version)
Article Tourism challenges facing peacebuilding in colombia NAEF, Patrick James, GUILLAND, Marie-Laure Abstract Declaring that a tourist Colombia guarantees a post-conflict reconstruction is not a performative act. We must therefore ask ourselves whether perceiving tourism as a tool in the service of peace is more of a myth or a reality. After a brief look at the recovery of Colombian tourism since the beginning of the 2000s, this article aims to observe some of the challenges that have characterised the sector since the signing of peace agreements between the government and the FARC-Ep, such as the rebuilding the country's image, prostitution and narco-tourism, the issue of access to land and resources, the promotion of eco-tourism and "community" tourism, and the role of this industry in the reintegration of demobilised combatants. Reference NAEF, Patrick James, GUILLAND, Marie-Laure. Tourism challenges facing peacebuilding in colombia. Via Tourism Review, 2019, vol. 15 Available at: http://archive-ouverte.unige.ch/unige:129730 Disclaimer: layout of this document may differ from the published version. 1 / 1 Via Tourism Review 15 | 2019 Tourisme et paix, une alliance incertaine en Colombie Tourism challenges facing peacebuilding in Colombia Marie-Laure Guilland and Patrick Naef Electronic version URL: http://journals.openedition.org/viatourism/4046 ISSN: 2259-924X Publisher Association Via@ Electronic reference Marie-Laure Guilland and Patrick Naef, « Tourism challenges facing peacebuilding in Colombia », Via [Online], 15 | 2019, Online since 22 November 2019, connection on 24 December 2019. URL : http:// journals.openedition.org/viatourism/4046 This text was automatically generated on 24 December 2019. -
Incidence and Identity of Photosynthetic Symbionts in Caribbean Coral Reef Sponge Assemblages
J. Mar. mz. A». KA! (2007), 87, 1683-1692 doi: 10.1017/S0025315407058213 Printed in the United Kingdom Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages Patrick M. Erwin and Robert W. Thacker* University of Alabama at Birmingham, 109 Campbell Hall, 1300 University Boulevard, Birmingham, Alabama 35294-1170, USA. Corresponding author, e-mail: [email protected] Marine sponges are abundant and diverse components of coral reefs and commonly harbour photosynthetic symbionts in these environments. The most prevalent symbiont is the cyanobacterium, Synechococcus spongiarum, isolated from taxonomically diverse hosts from geographically distant regions. We combined analyses of chlorophyll-a (chl-a) concentrations with line-intercept transect surveys to assess the abundance and diversity of reef sponges hosting photosymbionts on Caribbean coral reefs in the Bocas del Toro Archipelago, Panama. To identify symbionts, we designed PCR primers that specifically amplify a fragment of the 16S ribosomal RNA gene from S. spongiarum and used these primers to screen potential host sponges for the presence of this symbiont. Chlorophyll-a data divided the sponge community into two disparate groups, species with high (>125 Mg/g, N=20) and low (<50 Mg/g, N=38) chl-a concentrations. Only two species exhibited intermediate (50— 125 (Jg/g) chl-a concentrations; these species represented hosts with reduced symbiont populations, including bleached Xestospongia muta and the mangrove form of Chondrilla nucula (C. nucula f. hermatypicd). Sponges with high and intermediate chl-a concentrations accounted for over one-third of the species diversity and abundance of sponges in these communities. Most (85%) of these sponges harboured S. -
Microbiome Structure of Ecologically Important Bioeroding Sponges (Family Clionaidae)
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): 3 The role of host phylogeny and environmental plasticity. 4 Oriol Sacristán-Soriano1,2, †, Xavier Turon2 and Malcolm Hill1,3 5 6 7 1Department of Biology; University of Richmond; Richmond, VA 8 2Centre d’Estudis Avançats de Blanes (CEAB, CSIC), Blanes, Spain 9 3Department of Biology, Bates College, Lewiston, ME 04240 10 †Corresponding author 11 12 13 Keywords: symbiosis, bioerosion, microbiome, Symbiodinium, Cliona, Spheciospongia, 14 Cervicornia 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 Abstract 17 The potential of increased bioerosion by excavating sponges in future environmental scenarios 18 represents a potential threat to coral reef structure and function. If we are to predict changes to 19 coral reef habitats, it is important to understand the biology of these sponges. Little is known 20 about prokaryotic associations in excavating sponges despite the fact that evidence indicates they 21 contribute to the sponge growth through their heterotrophic metabolism and may even act as 22 microborers. Here, we provide the first detailed description of the microbial community of 23 multiple bioeroding sponges from the Clionaidae family (Cliona varians, C. -
Preliminary Report on the Turtle Awareness and Protection Studies
MINISTRY OF ENVIRONMENT, HONDURAS ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTIVE STUDIES (TAPS) PROGRAM, PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC. (ProTECTOR) IN ROATAN, HONDURAS 2007 – 2008 ANNUAL REPORT JANUARY 15, 2009 ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTION STUDIES (TAPS) PROGRAM UNDER THE PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC (ProTECTOR) IN ROATÁN, HONDURAS ANNUAL REPORT OF THE 2007 – 2008 SEASON Principal Investigator: Stephen G. Dunbar1,2,4 Co-Principal Investigator: Lidia Salinas2,3 Co-Principal Investigator: Melissa D. Berube2,4 1President, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), 2569 Topanga Way, Colton, CA 92324, USA 2 Turtle Awareness and Protection Studies (TAPS) Program, Oak Ridge, Roatán, Honduras 3Country Coordinator, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), Tegucigalpa, Honduras 4Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA PREFACE This report represents the ongoing work of the Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR) in the Bay Islands of Honduras. The report covers activities of ProTECTOR up to and including the 2008 calendar year and is provided in partial fulfillment of the permit agreement provided to ProTECTOR from 2006 to the end of 2008 by the Secretariat for Agriculture and Ranching (SAG). ACKNOWLEDGEMENTS ProTECTOR and TAPS recognize that without the financial and logistical assistance of the “Escuela de Buceo Reef House,” this project would not have been initiated. We thank the owners and staff of that facility for their interest in sea turtle conservation and their invaluable efforts on behalf of the sea turtles of Honduras. -
San Andrés, Old Providence and Santa Catalina (Caribbean Sea, Colombia)
REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA CATALINA (CARIBBEAN SEA, COLOMBIA) with Field Guide JÓRN GEISTER Y JUAN MANUEL DÍAZ República de Colombia MINISTERIO DE MINAS Y ENERGÍA INSTITUTO COLOMBIANO DE GEOLOGÍA Y MINERÍA INGEOMINAS REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA. CATALINA (CARIBBEAN SEA, COLOMBIA with FIELD GUIDE) INGEOMINAS 2007 DIAGONAL 53 N°34-53 www.ingeominas.gov.co DIRECTOR GENERAL MARIO BALLESTEROS MEJÍA SECRETARIO GENERAL EDWIN GONZÁLEZ MORENO DIRECTOR SERVICIO GEOLÓGICO CÉSAR DAVID LÓPEZ ARENAS DIRECTOR SERVICIO MINERO (e) EDWARD ADAN FRANCO GAMBOA SUBDIRECTOR DE GEOLOGÍA BÁSICA ORLANDO NAVAS CAMACHO COORDINADORA GRUPO PARTICIPACIÓN CIUDADANA, ATENCIÓN AL CLIENTE Y COMUNICACIONES SANDRA ORTIZ ÁNGEL AUTORES: 315RN GEISTER Y JUAN MANUEL DÍAZ REVISIÓN EDITORIAL HUMBERTO GONZÁLEZ CARMEN ROSA CASTIBLANCO DISEÑO Y DIAGRAMACIÓN GUSTAVO VEJARANO MATIZ J SILVIA GUTIÉRREZ PORTADA: Foto: Estación en el mar Cl. San Andrés: Pared vertical de Bocatora Hole a -30 m. El coral Montastraea sp. adoptó una forma plana. Agosto de 1998. IMPRESIÓN IMPRENTA NACIONAL DE COLOMBIA CONTENT PREFACE 7 1. GENERAL BACKGROUND 8 2. STRUCTURAL SETTING AND REGIONAL GEOLOGY OF THE ARCHIPÉLAGO 9 2.1 Caribbean Piafe 9 2.2 Upper and Lower Nicaraguan Rises 9 2.3 Hess Escarpment and Colombia Basin 11 2.4 Islands and atolls of the Archipelago 12 3. CLIMATE AND OCEANOGRAPHY 14 4. GENERAL CHARACTERS OF WESTERN CARIBBEAN OCEANIC REEF COMPLEXE (fig. 7) -
Search Bullet No
SEARCH BULLET NO. 236 ashineon, D.C., U.S.A. November 1979 I Poior t Md,tiniq"Q - CARI88EAN g o i 5r LvuajJ =& 8' SEA v'"i'"r? aJ,bdd-,D The White Horra , VENEZUELA - Jort Vai Gwat rcbw '& .; ",& THE VIRGIN ISLANDS Scale of Mlles III I d I bog Rod Heights In Feet SOME ASPECTS OF THE ECOLOGY OF REEFS SURROUNDING ANEGADA, BRITISH VIRGIIY ISLANDS 1. 2. by R.P. Dunne and B.E. Brown Introductory Description Anegada is a most unique island from many aspects. Northernmost of the American and British Virgin Islands and easternmost of the Greater Antilles, it is a flat limestone island, 17 km long and 4 km wide with a total area of about 14.94 square miles (9,567 acres 54 sq km), It is set aside from the other British Virgin Islands, being some 19 km from Virgin Gorda, its closest neighbour. It lies in distinct contrast to the volcanic and mountainous landscapes of the Virgin Group, with a maximum elevation of only 8 metres, To the north and east (windward side) the island is edged by extensive reefs beyond which stretches the Atlantic Ocean. On the leeward side, a shallow sea (2 to 8 m) separates Anegada from the main Virgin Island Group. His tory Schmburgk (1832) is the earliest authority on the island, having visited it in 1831 when he completed a most extensive survey. He writes: 'Of its history little is known; there is no likelihood that it was settled early. Ere Labat, the only early writer who speaks of the Lesser West India islands, observes, that aborigines used it as an occasional rendezvous, where they procured great quantities of conchs (~trombusgigas); and large piles of these shells are still to be seen at the east end of the island, but nowhere else ; which seems to prove decidedly that it was not permanently accupied, but merely resorted to from time to time. -
Describing Species
DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3. -
발행국명 코드 지시 Abu Dhabi → United Arab Emirates [Ts] Abu Zaby
발행국명 코드 지시 Abu Dhabi → United Arab Emirates [ts] Abu Zaby → United Arab Emirates [ts] Aden → Yemen [ye] Aden (Protectorate) → Yemen [ye] Admiralty Islands → Papua New Guinea [pp] Aegean Islands → Greece [gr] Afars → Djibouti [ft] Afghanistan af Agalega Islands → Mauritius [mf] Agrihan Island → Northern Mariana Islands [nw] Aguijan Island → Northern Mariana Islands [nw] Ahvenanmaa → Finland [fi] Ailinglapalap Atoll → Marshall Islands [xe] Ajman → United Arab Emirates [ts] Alamagan Island → Northern Mariana Islands [nw] Aland Islands → Finland [fi] Albania aa Aldabra Islands → Seychelles [se] Algeria ae Alofi → Wallis and Futuna [wf] Alphonse Island → Seychelles [se] American Samoa as Amindivi Islands → India [ii] Amirante Isles → Seychelles [se] Amsterdam Island → Terres australes et antarctiques francaises [fs] Anatahan Island → Northern Mariana Islands [nw] Andaman Islands → India [ii] Andorra an Anegada → British Virgin Islands [vb] Angaur Island → Palau [pw] Angola ao Anguilla am Code changed from [ai] to [am] Anjouan Island → Comoros [cq] Annobon → Equatorial Guinea [eg] Antarctica ay Antigua → Antigua and Barbuda [aq] Antigua and Barbuda aq Arab Republic of Egypt → Egypt [ua] Arab Republic of Yemen → Yemen [ye] Archipielago de Colon → Ecuador [ec] Argentina ag Armenia (Republic) ai Arno (Atoll) → Marshall Islands [xe] Arquipelago dos Bijagos → Guinea-Bissau [pg] 발행국명 코드 지시 Aruba aw Ascension Island (Atlantic Ocean) → Saint Helena [xj] Ascension Island (Micronesia) → Micronesia (Federated States) [fm] Ashanti → Ghana [gh] Ashmore and Cartier Islands ⓧ ac → Australia [at] Asuncion Island → Northern Mariana Islands [nw] Atafu Atoll → Tokelau [tl] Atauro, Ilha de → Indonesia [io] Austral Islands → French Polynesia [fp] Australia at Austria au Azerbaijan aj Azores → Portugal [po] Babelthuap Island → Palau [pw] Bahamas bf Bahrain ba Bahrein → Bahrain [ba] Baker Island → United States Misc.