San Andrés, Old Providence and Santa Catalina (Caribbean Sea, Colombia)

Total Page:16

File Type:pdf, Size:1020Kb

San Andrés, Old Providence and Santa Catalina (Caribbean Sea, Colombia) REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA CATALINA (CARIBBEAN SEA, COLOMBIA) with Field Guide JÓRN GEISTER Y JUAN MANUEL DÍAZ República de Colombia MINISTERIO DE MINAS Y ENERGÍA INSTITUTO COLOMBIANO DE GEOLOGÍA Y MINERÍA INGEOMINAS REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA. CATALINA (CARIBBEAN SEA, COLOMBIA with FIELD GUIDE) INGEOMINAS 2007 DIAGONAL 53 N°34-53 www.ingeominas.gov.co DIRECTOR GENERAL MARIO BALLESTEROS MEJÍA SECRETARIO GENERAL EDWIN GONZÁLEZ MORENO DIRECTOR SERVICIO GEOLÓGICO CÉSAR DAVID LÓPEZ ARENAS DIRECTOR SERVICIO MINERO (e) EDWARD ADAN FRANCO GAMBOA SUBDIRECTOR DE GEOLOGÍA BÁSICA ORLANDO NAVAS CAMACHO COORDINADORA GRUPO PARTICIPACIÓN CIUDADANA, ATENCIÓN AL CLIENTE Y COMUNICACIONES SANDRA ORTIZ ÁNGEL AUTORES: 315RN GEISTER Y JUAN MANUEL DÍAZ REVISIÓN EDITORIAL HUMBERTO GONZÁLEZ CARMEN ROSA CASTIBLANCO DISEÑO Y DIAGRAMACIÓN GUSTAVO VEJARANO MATIZ J SILVIA GUTIÉRREZ PORTADA: Foto: Estación en el mar Cl. San Andrés: Pared vertical de Bocatora Hole a -30 m. El coral Montastraea sp. adoptó una forma plana. Agosto de 1998. IMPRESIÓN IMPRENTA NACIONAL DE COLOMBIA CONTENT PREFACE 7 1. GENERAL BACKGROUND 8 2. STRUCTURAL SETTING AND REGIONAL GEOLOGY OF THE ARCHIPÉLAGO 9 2.1 Caribbean Piafe 9 2.2 Upper and Lower Nicaraguan Rises 9 2.3 Hess Escarpment and Colombia Basin 11 2.4 Islands and atolls of the Archipelago 12 3. CLIMATE AND OCEANOGRAPHY 14 4. GENERAL CHARACTERS OF WESTERN CARIBBEAN OCEANIC REEF COMPLEXE (fig. 7) 15 4.1 Gross geomorphology of reef complexes 15 4.2 Recent erosional and depositional processes 16 4.3 Collapse of carbonate platforms 18 4.3.1 Platform margin failures in the Archipélago 18 4.3.2 Shedding of megabreccias 19 4.3.3 Causes of collapse 20 4.3.4 Recurrence time of collapsing margins 20 4.4 General reef and lagoon ecology 20 4.4.1 Shallow reef facies 21 4.4.2 Deep reef facies 22 4.4.3 Hardground facies 22 4.4.4 Shallow sand facies 22 4.4.5 Shallow to deep sand facies 23 4.4.6 Deep sand facies 23 4.4.7 The fauna of stony corals and mollusks of the archipelago 23 5. STATUS OF REEF ENVIRONMENTS TAC171' 24 5.1 Natural versus anthropogenic degradation 24 5.2 Mortality rates of corals 24 5.3 Increases in macroalgae 25 5.4 Effects of overfishing 25 5.5 Recovery 25 5.6 Natural reserves and protection 25 6. ISLAND GEOLOGY AND REEFS OF THE LOWER NIC 26 6.1 Island geology and reefs of San Andrés (fig. 15, for island topography see fig. 25) 26 6.1.1 Early island origins 27 6.1.2 Miocene lagoon and reef environments 27 6.1.3 Pleistocene terraces and marine environments 29 6.1.4 Relative and absolute dating of Pleistocene marine terraces, sea cliffs and coral reefs 34 6.1.5 Pleistocene tectonics: absolute tilting rates and fracturing 35 6.1.6 Geologic history of the modern reef complex since the Middle Pleistocene transgression 36 6.1.7 Main characteristics of the Recent reef complex 38 Island geology and reefs of Old Providence and Sta. Catalina (maps on fig. 31, table 2) 40 6.2.1 Early island origins 42 6.2.2 Extrusion of rhyolite dome and formation of breccia aprons ("older volcanic series") 42 6.2.3 Formation of a composite volcanic cone ("younger volcanic series") 43 6.2.4 Notes on the petrography and geochemistry of the volcanic rocks by Claudio Scarcia (Bern). 45 6.2.5 Miocene carbonate environments 46 6.2.6 Pleistocene carbonate environments, delta deposits and sea-level stands 46 6.2.7 Holocene terrestrial deposits 47 6.2.8 The Recent reef complex (fig. 33-36) 47 6.3 Geology and reefs of the atolls and coral banks 50 6.3.1 Courtown Cays atoll (figs. 37 and 38) 50 6.3.2 Albuquerque Cays atoll (figs. 39 and 40) 52 6.3.3 Roncador Bank atoll (figs. 41 and 42) 54 6.3.4 Serrana Bank atoll (figs. 43 and 44) 55 6.3.5 Quitasueño Bank half-atoll (figs. 46 and 47) 58 6.3.6 Serranilla Bank half-atoll (fig. 48) 59 6.3.7 Alice Shoal drowned atoll (fig. 49) 60 6.3.8 Bajo Nuevo coral bank (fig.50) 61 7. GEOLOGICAL RISKS IN THE ARCHIPELAGO 62 7.1 Volcanism 62 7.2 Earthquakes 62 7.2 The geological record of earthquakes in the Archipelago 62 7.2 Earthquake hazards in the Archipélago 63 7.3 Tsunamis 64 7.3.1 Tsunamis in the Caribbean Sea 64 7.3,7 Tsunami threat in the Archipelago? 65 7.4 Tilting and sea-level fluctuations at San Andrés 65 7.4. , Effects of tilting 65 7.4.2 Holocene sea-level history and short-term prospecta 66 7.4,3 Possible effects in the Archipélago 66 7.5 Hurricanes and tropical storms 66 7.5.1 Geological effects of hurricanes 66 7.5.2 Hurricane threats to the Archipélago 67 7.6 Erosion and accretion of coastline: past and present 67 8. FIELD TRIPS TO THE ISLANDS AND REEFS 68 8.1 Visit to San Andrés Island: Holocene, Pleistocene and Miocene reefs and lagoonal environments (Trips A to E) 68 8.2 Visit to Old Providence Island: Quaternary reefs and island geology (Trips F to L) 82 8.3 Visit to Holocene atoll environments of Courtown Cays 93 9. OVERFIGHT OF THE ARCHIPELAGO BY CHARTERED PLANE 95 9.1 San Andrés Island and barrier reef complex from the air 95 9.2 Courtown Cays atoll from the air (see plan fig. 120, figs. 130 to 133) 97 9.3 Albuquerque Cays atoll from the air (see plan fig. 134) 98 9,4 Quitasueño Bank half-atoll from the air (see maps on figs. 46 and 47) 99 9.5 Serrana Bank atoll from the air (see plan fig. 146) 100 9.6 Roncador Bank atoll from the air (see plan fig. 150) 101 9,7 Old Providence Island and barrier reef complex from the air 102 Adresses of authors: PD Dr. rer. nat. Jórn Geister Naturhistorisches Museum Bern, Abteilung Erdwissenschaften, Bernastrasse 15, CH - 3005, Bern (Switzerland) [email protected] and GeoBio-Center at the Ludwig-Maximilians-Universitát München Richard-Wagner-Str. 10 D-80333 München (Germany) Dr. rer. nat. Juan Manuel Díaz Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andreis" - INVEMAR. Santa Marta. Current Adress: Instituto de Investigación de Recursos Biológi- cos "Alexander von Humboldt".- Bogotá. [email protected] Credit Photographs JÓRN GEISTER and JUAN MANUEL DÍAZ FIGURES: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156. PREFACE his book compiles the results of studies carried out active participation of Alvaro Nivia and financed by the in the Archipélago since 1968 (J.G.) together with Geological Survey of Colombia. The authors are especially the results of more recent unpublished work. Early grateful to INVEMAR and COLCIENCIAS (Bogotá) and to Tre-surveys of the reefs and reconnaissance studies in the direction of INGEOMINAS and CORALINA for the the volcanic rocks of Old Providence were carried out in support offered to them over many years of field studies. 1979 in the company of Marion Frantz. Subsequent studies which focused on the degradation of San Andrés reefs and Claudio Scarcia (Bern) contributed mapping results from the on the exploration of the four surrounding atolls (JMD) were southern part of Old Providence and geochemical data of supported by INVEMAR and COLCIENCIAS (Bogotá). The volcanic rocks. Geochemical analyses of volcanic rock sam- present book is based on a field-guide prepared and published ples were carried out by the Institut de Minéralogie et de Pé- for the "8th International Coral Reef Symposiurn" held at trographie of the University of Fribourg and the Institut de Panama City in 1996 (Geister & Díaz 1997). That guide and Minéralogie et de Géochimie of the University of Lausanne the present book were only possible after a joint re-survey (both Switzerland). We are grateful to Nan Mercolli (Bern) of the reefs carried out by both authors in October 1994 at for lis advice on volcanic rock samples and comments on San Andrés and Old Providence; this survey was financed by the text concerning Old Providence. Photographic work was COLCIENCIAS (Bogotá) and supported by INVEMAR, the financed by the Institut für Geologie of the University of Corporación CORALINA and the Swiss Ministry of Foreign Bern . Affairs (EDA/DEH). Subsequent (1998) studies in the Quitasueño Bank were financed by COLCIENCIAS (grant Graphic support and drafting was done by GEOTEC Ltda. to J. M. D.) and supported by the Swiss Ministry of Foreign (Bogotá). Much encouragement came from Fabio Cediel Affairs (EDA/DEH) (grant to J.G.).
Recommended publications
  • International Court of Justice
    INTERNATIONAL COURT OF JUSTICE Peace Palace, Carnegieplein 2, 2517 KJ The Hague, Netherlands Tel.: +31 (0)70 302 2323 Fax: +31 (0)70 364 9928 Website: www.icj-cij.org Summary Not an official document Summary 2007/4 8 October 2007 Territorial and Maritime Dispute between Nicaragua and Honduras in the Caribbean Sea (Nicaragua v. Honduras) Summary of the Judgment of 8 October 2007 Chronology of the procedure and submissions of the Parties (paras. 1-19) On 8 December 1999 Nicaragua filed an Application instituting proceedings against Honduras in respect of a dispute relating to the delimitation of the maritime areas appertaining to each of those States in the Caribbean Sea. In its Application, Nicaragua sought to found the jurisdiction of the Court on the provisions of Article XXXI of the American Treaty on Pacific Settlement (officially known as the “Pact of Bogotá”), as well as on the declarations accepting the jurisdiction of the Court made by the Parties, as provided for in Article 36, paragraph 2, of the Statute of the Court. Since the Court included upon the Bench no judge of the nationality of either of the Parties, each Party proceeded to exercise its right conferred by Article 31, paragraph 3, of the Statute to choose a judge ad hoc to sit in the case. Nicaragua chose Mr. Giorgio Gaja and Honduras first chose Mr. Julio González Campos, who resigned on 17 August 2006, and subsequently Mr. Santiago Torres Bernárdez. By an Order dated 21 March 2000 the President of the Court fixed 21 March 2001 and 21 March 2002, respectively, as the time-limits for the filing of the Memorial of Nicaragua and the Counter-Memorial of Honduras.
    [Show full text]
  • OGC-98-5 U.S. Insular Areas: Application of the U.S. Constitution
    United States General Accounting Office Report to the Chairman, Committee on GAO Resources, House of Representatives November 1997 U.S. INSULAR AREAS Application of the U.S. Constitution GAO/OGC-98-5 United States General Accounting Office GAO Washington, D.C. 20548 Office of the General Counsel B-271897 November 7, 1997 The Honorable Don Young Chairman Committee on Resources House of Representatives Dear Mr. Chairman: More than 4 million U.S. citizens and nationals live in insular areas1 under the jurisdiction of the United States. The Territorial Clause of the Constitution authorizes the Congress to “make all needful Rules and Regulations respecting the Territory or other Property” of the United States.2 Relying on the Territorial Clause, the Congress has enacted legislation making some provisions of the Constitution explicitly applicable in the insular areas. In addition to this congressional action, courts from time to time have ruled on the application of constitutional provisions to one or more of the insular areas. You asked us to update our 1991 report to you on the applicability of provisions of the Constitution to five insular areas: Puerto Rico, the Virgin Islands, the Commonwealth of the Northern Mariana Islands (the CNMI), American Samoa, and Guam. You asked specifically about significant judicial and legislative developments concerning the political or tax status of these areas, as well as court decisions since our earlier report involving the applicability of constitutional provisions to these areas. We have included this information in appendix I. 1As we did in our 1991 report on this issue, Applicability of Relevant Provisions of the U.S.
    [Show full text]
  • Regional Studies in Marine Science Reef Condition and Protection Of
    Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented.
    [Show full text]
  • Responses to Coastal Erosio in Alaska in a Changing Climate
    Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Alaska Sea Grant College Program University of Alaska Fairbanks SG-ED-75 Elmer E. Rasmuson Library Cataloging in Publication Data: Smith, Orson P. Responses to coastal erosion in Alaska in a changing climate : a guide for coastal residents, business and resource managers, engineers, and builders / Orson P. Smith ; Mikal K. Hendee. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2011. p.: ill., maps ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-75) Includes bibliographical references and index. 1. Coast changes—Alaska—Guidebooks. 2. Shore protection—Alaska—Guidebooks. 3. Beach erosion—Alaska—Guidebooks. 4. Coastal engineering—Alaska—Guidebooks. I. Title. II. Hendee, Mikal K. III. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks; SG-ED-75. TC330.S65 2011 ISBN 978-1-56612-165-1 doi:10.4027/rceacc.2011 © Alaska Sea Grant College Program, University of Alaska Fairbanks. All rights reserved. Credits This book, SG-ED-75, is published by the Alaska Sea Grant College Program, supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant NA10OAR4170097, projects A/75-02 and A/161-02; and by the University of Alaska Fairbanks with state funds. Sea Grant is a unique partnership with public and private sectors combining research, education, and technology transfer for the public.
    [Show full text]
  • Supplementary Material
    Supplementary Material SM1. Post-Processing of Images for Automated Classification Imagery was collected without artificial light and using a fisheye lens to maximise light capture, therefore each image needed to be processed prior annotation in order to balance colour and to minimise the non-linear distortion introduced by the fisheye lens (Figure S1). Initially, colour balance and lenses distortion correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). However, in order to optimize the manual post-processing time of thousands of images, more recent images from the Indian Ocean and Pacific Ocean were post- processed using compressed images (jpeg format) and an automatic batch processing in Photoshop and ImageMagick, the latter an open-source software for image processing (www.imagemagick.org). In view of this, the performance of the automated image annotation on images without colour balance was contrasted against images colour balanced using manual post-processing (on raw images) and the automatic batch processing (on jpeg images). For this evaluation, the error metric described in the main text (Materials and Methods) was applied to the images from following regions: the Maldives and the Great Barrier Reef (Figures S2 and S3). We found that the colour balance applied regardless the type of processing (manual vs automatic) had an important beneficial effect on the performance of the automated image annotation as errors were reduced for critical labels in both regions (e.g., Algae labels; Figures S2 and S3). Importantly, no major differences in the performance of the automated annotations were observed between manual and automated adjustments for colour balance.
    [Show full text]
  • Evolution of the Northern Nicaragua Rise During the Oligocene–Miocene: Drowning by Environmental Factors
    Sedimentary Geology 175 (2005) 237–258 www.elsevier.com/locate/sedgeo Research paper Evolution of the Northern Nicaragua Rise during the Oligocene–Miocene: Drowning by environmental factors Maria Muttia,T, Andre´ W. Droxlerb, Andrew D. Cunninghamc aInstitut fu¨r Geowissenschaften, Universita¨t Potsdam, Postfach 60 15 53, Potsdam D-14415, Germany bRice University, Department of Earth Science, P.O. Box 1892, Houston, TX 77251-1892, USA cBP Amoco, 501 Westlake Park Boulevard, Houston, TX 77253-3092, USA Received 16 June 2004; received in revised form 14 December 2004; accepted 20 December 2004 Abstract Possible causes to explain platform drowning have been hotly debated by carbonate sedimentologists for more than a decade now. In this paper, we present multiple evidence to explain the drowning of a carbonate megabank that covered most of the modern Northern Nicaragua Rise (NNR) during an interval spanning from late Oligocene to early Miocene by the interaction of several environmental factors. The recovery during ODP Leg 165 of late Oligocene to middle Miocene sedimentary sequences in the sub-seafloor of the modern channels and basin, Pedro Channel and Walton Basin, respectively, that dissect the NNR (Site 1000) and south of the rise in the Colombian Basin (Site 999), combined with information from dredged rock samples, allows us to explore in more detail the timing and possible mechanisms responsible for the drowning of the megabank and its relationship to Miocene climate change. The modern system of isolated banks and shelves dissected by a series of intervening seaways and basins on the NNR has evolved from a continuous, shallow-water carbonate bmegabankQ that extended from the Honduras/Nicaraguan mainland to the modern island of Jamaica.
    [Show full text]
  • Carbonate Ramps: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Carbonate ramps: an introduction V. P. WRIGHT 1 & T. P. BURCHETTE 2 1Department of Earth Sciences, Cardiff University, Cardiff CF1 3YE, UK and BG Exploration and Production, 100 Thames Valley Park Drive, Reading RG6 1PT, UK 2Bp Exploration, Building 200, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN, UK Carbonate ramps are carbonate platforms which history. The term shelf is, however, most widely have a very low gradient depositional slope used in the geological context for any broad, (commonly less than 0.1 ~ from a shallow-water gently-sloping surface, clastic or carbonate, shoreline or lagoon to a basin floor (Burchette & which has a break in slope in deeper water, and Wright 1992). A large proportion of carbonate is typified by usage of the term 'continental successions in the geological record were shelf' (e.g. Bates & Jackson 1987). In addition, deposited in ramp-like settings. Nevertheless, the term ramp is now also widely used by clastic ramps remain one of the more enigmatic sedimentologists for low-gradient submarine carbonate platform types. In contrast to steeper- slopes, particularly on continental shelves. sloped rimmed shelves and isolated buildups, Where the dominant sea-floor sediments are of where the factors which have controlled their carbonate mineralogy, however, such a configu- location and development are commonly quite ration has become known as a 'distally steep- evident, the controls on ramp development have ened ramp', a morphology which in carbonate seldom been clearly demonstrated. In order to settings is more often than not inherited from an shed new light on this topic, and related aspects antecedent morphological feature.
    [Show full text]
  • Pseudosiderastrea Formosa Sp. Nov. (Cnidaria: Anthozoa: Scleractinia)
    Zoological Studies 51(1): 93-98 (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a New Coral Species Endemic to Taiwan Michel Pichon1, Yao-Yang Chuang2,3, and Chaolun Allen Chen2,3,4,* 1Museum of Tropical Queensland, 70-102 Flinders Street, Townsville 4810, Australia 2Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 3Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 4Institute of Life Science, National Taitung Univ., Taitung 904, Taiwan (Accepted September 1, 2011) Michel Pichon, Yao-Yang Chuang, and Chaolun Allen Chen (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a new coral species endemic to Taiwan. Zoological Studies 51(1): 93-98. Pseudosiderastrea formosa sp. nov. is a new siderastreid scleractinian coral collected in several localities in Taiwan. It lives on rocky substrates where it forms encrusting colonies. Results of morphological observations and molecular genetic analyses are presented. The new species is described and compared to P. tayamai and Siderastrea savignyana, and its morphological and phylogenic affinities are discussed. http://zoolstud.sinica.edu.tw/Journals/51.1/93.pdf Key words: Pseudosiderastrea formosa sp. nov., New species, Scleractinia, Siderastreid, Western Pacific Ocean. A siderastreid scleractinian coral was Pseudosiderastrea, described as P. formosa sp. collected from several localities around Taiwan nov. and nearby islands, where it is relatively rare. The specimens present some morphological similarities with Pseudosiderastrea tayamai Yabe MATERIAL AND METHODS and Sugiyama, 1935, the only species hitherto known from that genus, and with Siderastrea Specimens were collected by scuba diving at savignyana Milne Edwards and Haime, 1849, Wanlitung (21°59'48"N, 120°42'10"E) and the outlet which is the sole representative in the Indian of the 3rd nuclear power plant (21°55'51.38"N, Ocean of the genus Siderastrea de Blainville, 120°44'46.82"E) on the southeastern coast 1830.
    [Show full text]
  • Growth and Demise of a Paleogene Isolated Carbonate Platform of the Offshore Indus Basin, Pakistan: Effects of Regional and Local Controlling Factors
    Published in "Marine Micropaleontology 140: 33–45, 2018" which should be cited to refer to this work. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors Khurram Shahzad1 · Christian Betzler1 · Nadeem Ahmed2 · Farrukh Qayyum1 · Silvia Spezzaferri3 · Anwar Qadir4 Abstract Based on high-resolution seismic and well depositional trend of the platform, controlled by the con- datasets, this paper examines the evolution and drown- tinuing thermal subsidence associated with the cooling of ing history of a Paleocene–Eocene carbonate platform in volcanic margin lithosphere, was the major contributor of the Offshore Indus Basin of Pakistan. This study uses the the accommodation space which supported the vertical internal seismic architecture, well log data as well as the accumulation of shallow water carbonate succession. Other microfauna to reconstruct factors that governed the car- factors such as eustatic changes and changes in the carbon- bonate platform growth and demise. Carbonates domi- ate producers as a response to the Paleogene climatic per- nated by larger benthic foraminifera assemblages permit turbations played secondary roles in the development and constraining the ages of the major evolutionary steps and drowning of these buildups. show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigra- Keywords Paleogene carbonate platform · Seismic phy, the carbonate platform edifice is resolved into seven sequence stratigraphy · Drowning · Offshore Indus Basin · seismic units which in turn are grouped into three packages Larger benthic foraminifera · Biostratigraphy that reflect its evolution from platform initiation, aggrada- tion with escarpment formation and platform drowning.
    [Show full text]
  • Coral Species ID
    Coral Species ID Colony shape (branching, mound, plates, column, crust, etc) Colony surface (bumpy, smooth, ridges) Polyp/Corallite Size (small, big) Polyp/Corallite shape (round/elliptical, irregular, y- shaped, „ innies vs outies‟ ridge/valley) Polyp color (green, brown, tan, yellow, olive, red) Different Corallite Shapes and Sizes Examples of Massive Stony Corals Montastraea Montastraea Suleimán © W.Harrigan © faveolata cavernosa S. © Diploria strigosa Porites astreoides © M. White© Montastraea faveolata MFAV Small, round polyps Form very large mounds, plates or crusts (to 4-5 m /12-15 ft) © S. ThorntonS. © Montastraea faveolata MFAV Surfaces smooth, ridged, or with bumps aligned in vertical rows © W. Harrigan © M. Weber © R. Steneck Montastraea faveolata MFAV Colonies are flattened, massive- plates with smooth surfaces under conditions of low light. Montastrea annularis MANN How similar to M. faveolata Small polyps Smooth surface How different Colonies are subdivided into numerous mounds or columns with live polyps at their summits. Plates at colony bases under low light conditions. (to 3-4 m/9-12 ft) Which is which? M. annularis M. faveolata MANN MFAV Montastrea franksi MFRA How similar to M. faveolata Small polyps and bumps Close-up How different Some polyps in bumps are larger, irregularly shaped, and may lack zooxanthellae. More aggressive spatial competitor. © P. Humann Montastrea franksi MFRA How similar to M. faveolata Form mounds, short columns, crusts, and/or plates. How different Bumps are scattered over colony surface. (to 3-4 m/9-12 ft) Montastrea franksi MFRA Flattened, massive plate morphology in low light conditions. Solenastrea bournoni SBOU How similar to M. annularis Small round polyps Mounds How different Lighter colors in life, Walls of some polyps are more distinct (“outies”) Bumpy colony surface (to ~1/2 m/<20 in) Solenastrea hyades SHYA How similar to S.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 50
    38. MESOZOIC CALCITURBDITES IN DEEP SEA DRILLING PROJECT HOLE 416A RECOGNITION OF A DROWNED CARBONATE PLATFORM Wolfgang Schlager, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, University of Miami, Miami, Florida ABSTRACT The Tithonian-Hauterivian section of Site 416 contains about 10 per cent limestone and marlstone in well-defined beds between shale and sandstone. Depositional structures, grain composition, and dia- genetic fabrics of the limestone beds as well as their association with graded sandstone and brown shale suggest their deposition by turbid- ity currents below calcite-compensation depth. Carbonate material was initially shed from a shallow-water platform with ooid shoals and peloidal sands. Soft clasts of deep-water carbonate muds were ripped up during downslope sediment transport. Shallow-water mud of metastable aragonite and magnesium calcite was deposited on top of the graded sands, forming the fine tail of the turbidite; it has been subsequently altered to tight micritic limestone that is harder and less porous than Coccolith sediment under similar overburden. Abnor- mally high strontium contents are attributed to high aragonite con- tents in the original sediment. This suggests that the limestone beds behaved virtually as closed systems during diagenesis. Drowning of the platform during the Valanginian is inferred from the disappearance of the micritic limestones, the increase in abun- dance of phosphorite, of ooids with quartz nuclei, and of the quartz content in the calciturbidites. In Hauterivian time, the carbonate supply disappeared completely. The last limestone layers are litho- clastic breccias which indicate that erosion has cut into well-lithified and dolomitized deeper parts of the platform rather than sweeping off loose sediment from its top.
    [Show full text]
  • (Strombus Gigas) in Colombia
    NDF WORKSHOP CASE STUDIES WG 9 – Aquatic Invertebrates CASE STUDY 3 Strombus gigas Country – COLOMBIA Original language – English NON-DETRIMENTAL FINDINGS FOR THE QUEEN CONCH (STROMBUS GIGAS) IN COLOMBIA AUTHORS: Martha Prada1 Erick Castro2 Elizabeth Taylor1 Vladimir Puentes3 Richard Appeldoorn4 Nancy Daves5 1 CORALINA 2 Secretaria de Agricultura y Pesca 3 Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial 4 Universidad Puerto Rico – Caribbean Coral Reef Institute 5 NOAA Fisheries I. BACKGROUND INFORMATION ON THE TAXA The queen conch (Strombus gigas) has been a highly prized species since pre-Columbian times, dating the period of the Arawak and Carib Indians. Early human civilizations utilized the shell as a horn for reli- gious ceremonies, for trade and ornamentation such as bracelets, hair- pins, and necklaces. Archeologists have also found remnants of conch shell pieces that were used as tools, possibly to hollow out large trees once used as canoes (Brownell and Stevely 1981). The earliest record of commercial harvest and inter-island trade extend from the mid 18th century, when dried conch meat was shipped from the Turks and Caicos Islands to the neighboring island of Hispaniola (Ninnes 1984). In Colombia, queen conch constitutes one of the most important Caribbean fisheries, it is second in value, after the spiny lobster. The oceanic archipelago of San Andrés, Providence and Santa Catalina pro- duces more than 95% country’s total production of this species. This fishery began in the 1970´s when the continental-shelf archipelagos of San Bernardo and Rosario, following full exploitation were quickly depleted due to a lack of effective management (Mora 1994).
    [Show full text]