Small and Large Intestine Histology Histology > Digestive System > Digestive System

Total Page:16

File Type:pdf, Size:1020Kb

Small and Large Intestine Histology Histology > Digestive System > Digestive System Small and Large Intestine Histology Histology > Digestive System > Digestive System SMALL INTESTINE: GENERAL FEATURES Includes the duodenum, jejunum, and ileum (which can be remembered with the mnemonic Don't Jiggle It) Wall Layers • Mucosa - Villi are finger-like extensions of mucosa - Covered in surface columnar epithelial cells, including absorptive enterocytes, from which microvilli extend into the lumen as a brush border. - Surface epithelium also secretes surface mucus for protection and lubrication. - Villi and microvilli increase surface area for absorption • Submucosa - Separated from mucosa by muscularis mucosae • Muscularis externa - Longitudinal and circular layers of smooth muscle - Innervated by enteric nervous system • Serosa Circular folds, aka, plicae circulares, (aka, folds of Kerkring) • Provide increased surface area for digestion. Recall that continued digestion of foods and absorption of nutrients are key functions of the small intestine. - Are most prominent in the middle region of the small intestine (largely absent in colon). Lacteals • Lacteals are the lymphatic structures of the small intestine that absorb lipids, and are in close association with the vasculature. Tubular intestinal glands/crypts • Further increase the surface area of the small intestine. • Paneth cells, which are not distinguishable here, reside at the base of the crypts; they secrete antimicrobial peptides 1 / 2 that protect enterocytes from bacteria. Goblet cells • Secrete lubrication SMALL INTESTINE: SPECIFICS Brunner's glands in submucosa of duodenum Peyer's patches - Aggregations of lymphoid tissues with a germinal center surrounded by a dome. Lymphoid tissues are present in all parts of the gastrointestinal tract (except the stomach), and are collectively referred to as GALT – gut-associated lymphoid tissue. Peyer's patches are most prevalent in the distal section of the small intestine and the colon. COLON The large intestine includes the colon, which is subdivided per its direction of travel within the abdominopelvic cavity, and the rectum and anus. Walls • Four layers, continuous with those of small intestine Tubular glands in mucosa • Abundant goblet cells The large intestine is responsible for absorption of water, salt, vitamins and minerals; though not visible in our sample, the glands are deeper than in the small intestine. Again, remember that the large intestine does not have circular folds. Images: Histology (Mark Braun, MD, & Indiana University: http://medsci.indiana.edu/c602web/602/c602web/toc.htm; http://www.indiana.edu/~anat215/virtualscope2/start.htm) Powered by TCPDF (www.tcpdf.org) 2 / 2.
Recommended publications
  • The Herbivore Digestive System Buffalo Zebra
    The Herbivore Digestive System Name__________________________ Buffalo Ruminant: The purpose of the digestion system is to ______________________________ _____________________________. Bacteria help because they can digest __________________, a sugar found in the cell walls of________________. Zebra Non- Ruminant: What is the name for the largest section of Organ Color Key a ruminant’s Mouth stomach? Esophagus __________ Stomach Small Intestine Cecum Large Intestine Background Information for the Teacher Two Strategies of Digestion in Hoofed Mammals Ruminant Non‐ruminant Representative species Buffalo, cows, sheep, goats, antelope, camels, Zebra, pigs, horses, asses, hippopotamus, rhinoceros giraffes, deer Does the animal Yes, regurgitation No regurgitation regurgitate its cud to Grass is better prepared for digestion, as grinding Bacteria can not completely digest cell walls as chew material again? motion forms small particles fit for bacteria. material passes quickly through, so stool is fibrous. Where in the system do At the beginning, in the rumen Near the end, in the cecum you find the bacteria This first chamber of its four‐part stomach is In this sac between the two intestines, bacteria digest that digest cellulose? large, and serves to store food between plant material, the products of which pass to the rumination and as site of digestion by bacteria. bloodstream. How would you Higher Nutrition Lower Nutrition compare the nutrition Reaps benefits of immediately absorbing the The digestive products made by the bacteria are obtained via digestion? products of bacterial digestion, such as sugars produced nearer the end of the line, after the small and vitamins, via the small intestine. intestine, the classic organ of nutrient absorption.
    [Show full text]
  • Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
    1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process.
    [Show full text]
  • Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-Tailed Opossum (Monodelphis Domestica) and North American Opossum (Didelphis Virginiana)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2001 Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana) Lee Anne Cope University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Cope, Lee Anne, "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana). " PhD diss., University of Tennessee, 2001. https://trace.tennessee.edu/utk_graddiss/2046 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lee Anne Cope entitled "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. Robert W. Henry, Major Professor We have read this dissertation and recommend its acceptance: Dr. R.B. Reed, Dr. C. Mendis-Handagama, Dr. J. Schumacher, Dr. S.E. Orosz Accepted for the Council: Carolyn R.
    [Show full text]
  • Epithelial Control of Gut-Associated Lymphoid Tissue Formation Through P38α-Dependent Restraint of NF-Κb Signaling
    Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38 α -Dependent Restraint of NF-κB Signaling This information is current as Celia Caballero-Franco, Monica Guma, Min-Kyung Choo, of September 27, 2021. Yasuyo Sano, Thomas Enzler, Michael Karin, Atsushi Mizoguchi and Jin Mo Park J Immunol 2016; 196:2368-2376; Prepublished online 20 January 2016; doi: 10.4049/jimmunol.1501724 Downloaded from http://www.jimmunol.org/content/196/5/2368 Supplementary http://www.jimmunol.org/content/suppl/2016/01/19/jimmunol.150172 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 53 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/196/5/2368.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38a-Dependent Restraint of NF-kB Signaling Celia Caballero-Franco,* Monica Guma,†,‡ Min-Kyung Choo,* Yasuyo Sano,* Thomas Enzler,*,x Michael Karin,†,{ Atsushi Mizoguchi,‖ and Jin Mo Park* The protein kinase p38a mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses.
    [Show full text]
  • 48 Anal Canal
    Anal Canal The rectum is a relatively straight continuation of the colon about 12 cm in length. Three internal transverse rectal valves (of Houston) occur in the distal rectum. Infoldings of the submucosa and the inner circular layer of the muscularis externa form these permanent sickle- shaped structures. The valves function in the separation of flatus from the developing fecal mass. The mucosa of the first part of the rectum is similar to that of the colon except that the intestinal glands are slightly longer and the lining epithelium is composed primarily of goblet cells. The distal 2 to 3 cm of the rectum forms the anal canal, which ends at the anus. Immediately proximal to the pectinate line, the intestinal glands become shorter and then disappear. At the pectinate line, the simple columnar intestinal epithelium makes an abrupt transition to noncornified stratified squamous epithelium. After a short transition, the noncornified stratified squamous epithelium becomes continuous with the keratinized stratified squamous epithelium of the skin at the level of the external anal sphincter. Beneath the epithelium of this region are simple tubular apocrine sweat glands, the circumanal glands. Proximal to the pectinate line, the mucosa of the anal canal forms large longitudinal folds called rectal columns (of Morgagni). The distal ends of the rectal columns are united by transverse mucosal folds, the anal valves. The recess above each valve forms a small anal sinus. It is at the level of the anal valves that the muscularis mucosae becomes discontinuous and then disappears. The submucosa of the anal canal contains numerous veins that form a large hemorrhoidal plexus.
    [Show full text]
  • The Digestive System
    Connective tissue The Digestive System Part 1 Structure of digestive system Functions Basic Structure of the Alimentary Canal Wall Tube is made up of four layers: 1. Mucosa 2. Submucosa 3. Muscularis externa 4. Serosa (Peritoneum) or Adventitia Mucosa The innermost wall of the alimentary tube. Consists of: • Epithelium - usually simple columnar epithelium with goblet cells; may be stratified squamous if protection is needed (e.g. esophagus) • Lamina propria – loose connective tissue • Muscularis mucosae – takes part in the formation of folds Submucosa Made up of loose connective tissue. Contains submucosal (Meissner’s) nervous plexus and blood vessels, sometimes glands. Muscularis externa Usually two layers of smooth muscle: • inner circular layer • outer longitudinal layer. • Myenteric (Auerbach’s) nervous plexus in between • Responsible for peristalsis (controlled by the nerve plexus) Outer membrane • A serous membrane/peritoneum consisting of the mesothelium (simple squamous epithelium), and a small amount of underlying loose connective tissue. • Or adventitia consisting only of connective tissue is found where the wall of the tube is directly attached or fixed to adjoining structures (i.e., body wall and certain organs). Enteric nervous system The Alimentary Canal Pharynx Common respiratory and digestive pathway (both air and swallowed food and drinks pass through). • Stratified squamous non-keratinized epithelium • Lamina propria contains many elastic fibers • No muscularis mucosae • No submucosa • Striated muscle in the muscularis externa Esophagus Fixed muscular tube that delivers food and liquid from the pharynx to the stomach. Esophagus Epithelium - stratified squamous Mucosal and submucosal glands of the esophagus secrete mucus to lubricate and protect the luminal wall. Esophageal glands proper lie in the submucosa.
    [Show full text]
  • Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate
    Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc.
    [Show full text]
  • Smoothelin Expression in the Gastrointestinal Tract: Implication in Colonic Inertia Owen T.M
    RESEARCH ARTICLE Smoothelin Expression in the Gastrointestinal Tract: Implication in Colonic Inertia Owen T.M. Chan, MD, PhD,* Lauren Chiles, MD,* Mary Levy, DO,* Jing Zhai, MD, PhD,* Lisa M. Yerian, MD,w Haodong Xu, MD, PhD,z Shu-Yuan Xiao, MD,y Edy E. Soffer, MD,8 Jeffrey L. Conklin, MD,8 Deepti Dhall, MD,* Melissa E. Kahn, MD,* Bonnie L. Balzer, MD,* Mahul B. Amin, MD,* and Hanlin L. Wang, MD, PhD*z Key Words: smoothelin, colonic inertia, intestinal motility Abstract: Colonic inertia is a frustrating motility disorder to disorder, chronic intestinal pseudo-obstruction, slow transit patients, clinicians, and pathologists. The pathogenesis is largely constipation unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific con- (Appl Immunohistochem Mol Morphol 2013;21:452–459) tractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in hronic constipation is a frequent complaint, being patients with colonic inertia. A total of 57 resections of the Creported in up to 16% of women and 12% of men.1 normal GI tract (distal esophagus to left colon) were obtained Clinically, constipation and colonic motility disorders are from patients without GI motor dysfunction. Sixty-one colon defined by not only infrequent bowel movements, but also resections were obtained from patients with a clinical diagnosis other manifestations such as excessive straining, hard of colonic inertia. Smoothelin immunostaining was conducted stools, incomplete evacuation, sensation of obstruction, on full-thickness tissue sections. In the nondysmotile controls, and manual maneuvers to facilitate defecation.2,3 General strong and diffuse cytoplasmic staining for smoothelin was ob- management of constipation includes conservative thera- served in both the inner circular and outer longitudinal layers of pies, such as behavioral modification, bulking agents, os- the muscularis propria (MP) throughout the entire GI tract.
    [Show full text]
  • Overview of Gastrointestinal Function
    Overview of Gastrointestinal Function George N. DeMartino, Ph.D. Department of Physiology University of Texas Southwestern Medical Center Dallas, TX 75390 The gastrointestinal system Functions of the gastrointestinal system • Digestion • Absorption • Secretion • Motility • Immune surveillance and tolerance GI-OP-13 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Structure of a villus Villus Lamina propria Movement of substances across the epithelial layer Tight junctions X Lumen Blood Apical membrane Basolateral membrane X X transcellular X X paracellular GI-OP-19 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Motility in the gastrointestinal system Propulsion net movement by peristalsis Mixing for digestion and absorption Separation sphincters Storage decreased pressure GI-OP-42 Intercellular signaling in the gastrointestinal system • Neural • Hormonal • Paracrine GI-OP-10 Neural control of the GI system • Extrinsic nervous system autonomic central nervous system • Intrinsic (enteric) nervous system entirely with the GI system GI-OP-14 The extrinsic nervous system The intrinsic nervous system forms complete functional circuits Sensory neurons Interneurons Motor neurons (excitatory and inhibitory) Parasympathetic nerves regulate functions of the intrinsic nervous system Y Reflex control of gastrointestinal functions Vago-vagal Afferent reflex Salivary Glands Composition of Saliva O Proteins α−amylase lactoferrin lipase RNase lysozyme et al mucus O Electrolyte solution water Na+ , K + - HCO3
    [Show full text]
  • The Small and Large Intestines∗
    OpenStax-CNX module: m46512 1 The Small and Large Intestines∗ OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0y Abstract By the end of this section, you will be able to: • Compare and contrast the location and gross anatomy of the small and large intestines • Identify three main adaptations of the small intestine wall that increase its absorptive capacity • Describe the mechanical and chemical digestion of chyme upon its release into the small intestine • List three features unique to the wall of the large intestine and identify their contributions to its function • Identify the benecial roles of the bacterial ora in digestive system functioning • Trace the pathway of food waste from its point of entry into the large intestine through its exit from the body as feces The word intestine is derived from a Latin root meaning internal, and indeed, the two organs together nearly ll the interior of the abdominal cavity. In addition, called the small and large bowel, or colloquially the guts, they constitute the greatest mass and length of the alimentary canal and, with the exception of ingestion, perform all digestive system functions. 1 The Small Intestine Chyme released from the stomach enters the small intestine, which is the primary digestive organ in the body. Not only is this where most digestion occurs, it is also where practically all absorption occurs. The longest part of the alimentary canal, the small intestine is about 3.05 meters (10 feet) long in a living person (but about twice as long in a cadaver due to the loss of muscle tone).
    [Show full text]
  • 6-Physiology of Large Intestine.Pdf
    LARGE INTESTINE COLON MOTILITY Color index • Important • Further explanation 1 Contents . Mind map.......................................................3 . Colon Function…………………………………4 . Physiology of Colon Regions……...…………6 . Absorption and Secretion…………………….8 . Types of motility………………………………..9 . Innervation and motility…………………….....11 . Defecation Reflex……………………………..13 . Fecal Incontinence……………………………15 Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work Physiology Edit 2 Mind map 3 COLON FUNCTIONS: Secretions of the Large Intestine: Mucus Secretion. • The mucosa of the large intestine has many crypts of 3 Colon consist of : Lieberkühn. • Absence of villi. • Ascending • Transverse • The epithelial cells contain almost no enzymes. • Descending • Presence of goblet cells that secrete mucus (provides an • Sigmoid adherent medium for holding fecal matter together). • Rectum • Anal canal • Stimulation of the pelvic nerves1 from the spinal cord can cause: Functions of the Large Intestine: o marked increase in mucus secretion. o This occurs along with increase in peristaltic motility 1. Reabsorb water and compact material of the colon. into feces. 2. Absorb vitamins produced by bacteria. • During extreme parasympathetic stimulation, so much 3. Store fecal matter prior to defecation. mucus can be secreted into the large intestine that the person has a bowel movement of ropy2 mucus as often as every 30 minutes; this mucus often contains little or no 1: considered a part of parasympathetic in large intestine . fecal material. 2: resembling a rope in being long, strong, and fibrous 3: anatomical division. 4 ILEOCECAL VALVE It prevents backflow of contents from colon into small intestine.
    [Show full text]
  • Short Bowel Syndrome with Intestinal Failure Were Randomized to Teduglutide (0.05 Mg/Kg/Day) Or Placebo for 24 Weeks
    Short Bowel (Gut) Syndrome LaTasha Henry February 25th, 2016 Learning Objectives • Define SBS • Normal function of small bowel • Clinical Manifestation and Diagnosis • Management • Updates Basic Definition • A malabsorption disorder caused by the surgical removal of the small intestine, or rarely it is due to the complete dysfunction of a large segment of bowel. • Most cases are acquired, although some children are born with a congenital short bowel. Intestinal Failure • SBS is the most common cause of intestinal failure, the state in which an individual’s GI function is inadequate to maintain his/her nutrient and hydration status w/o intravenous or enteral supplementation. • In addition to SBS, diseases or congenital defects that cause severe malabsorption, bowel obstruction, and dysmotility (eg, pseudo- obstruction) are causes of intestinal failure. Causes of SBS • surgical resection for Crohn’s disease • Malignancy • Radiation • vascular insufficiency • necrotizing enterocolitis (pediatric) • congenital intestinal anomalies such as atresias or gastroschisis (pediatric) Length as a Determinant of Intestinal Function • The length of the small intestine is an important determinant of intestinal function • Infant normal length is approximately 125 cm at the start of the third trimester of gestation and 250 cm at term • <75 cm are at risk for SBS • Adult normal length is approximately 400 cm • Adults with residual small intestine of less than 180 cm are at risk for developing SBS; those with less than 60 cm of small intestine (but with a
    [Show full text]