Biocrust Restoration in Drylands
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin
Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Balskus, Emily P., and Christopher T. Walsh. 2008. “Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin.” Journal of the American Chemical Society 130 (46) (November 19): 15260–15261. Published Version doi:10.1021/ja807192u Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12153245 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP NIH Public Access Author Manuscript J Am Chem Soc. Author manuscript; available in PMC 2009 November 19. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Am Chem Soc. 2008 November 19; 130(46): 15260±15261. doi:10.1021/ja807192u. Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin Emily P. Balskus and Christopher T. Walsh Contribution from the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 Photosynthetic cyanobacteria have evolved a variety of strategies for coping with exposure to damaging solar UV radiation,1 including DNA repair processes,2 UV avoidance behavior,3 and the synthesis of radiation-absorbing pigments.4 Scytonemin (1) is the most widespread and extensively characterized cyanobacterial sunscreen.5 This lipid soluble alkaloid accumulates in the extracellular sheaths of cyanobacteria upon exposure to UV-A light, where 6 it absorbs further incident radiation λmax = 384 nm). -
Bacteria Increase Arid-Land Soil Surface Temperature Through the Production of Sunscreens
Lawrence Berkeley National Laboratory Recent Work Title Bacteria increase arid-land soil surface temperature through the production of sunscreens. Permalink https://escholarship.org/uc/item/0gm2g8mx Journal Nature communications, 7(1) ISSN 2041-1723 Authors Couradeau, Estelle Karaoz, Ulas Lim, Hsiao Chien et al. Publication Date 2016-01-20 DOI 10.1038/ncomms10373 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 9 Jun 2015 | Accepted 3 Dec 2015 | Published 20 Jan 2016 DOI: 10.1038/ncomms10373 OPEN Bacteria increase arid-land soil surface temperature through the production of sunscreens Estelle Couradeau1, Ulas Karaoz2, Hsiao Chien Lim2, Ulisses Nunes da Rocha2,w, Trent Northen3, Eoin Brodie2,4 & Ferran Garcia-Pichel1,3 Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. -
Thi Thu Tram NGUYEN
ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière Thi Thu Tram NGUYEN Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes 1) Screening of Thèse soutenue à Rennes le 19 décembre 2014 mycosporine-like devant le jury composé de : compounds in the Marie-Dominique GALIBERT Professeur à l’Université de Rennes 1 / Examinateur Dermatocarpon genus. Holger THÜS Conservateur au Natural History Museum Londres / Phytochemical study Rapporteur Erwan AR GALL of the lichen Maître de conférences à l’Université de Bretagne Occidentale / Rapporteur Dermatocarpon luridum Kim Phi Phung NGUYEN Professeur à l’Université des sciences naturelles (With.) J.R. Laundon. d’Hô-Chi-Minh-Ville Vietnam / Examinateur Marylène CHOLLET-KRUGLER Maître de conférences à l’Université de Rennes1 / Co-directeur de thèse Joël BOUSTIE Professeur à l’Université de Rennes 1 / Directeur de thèse Remerciements En premier lieu, je tiens à remercier Monsieur le Dr Holger Thüs et Monsieur le Dr Erwan Ar Gall d’avoir accepté d’être les rapporteurs de mon manuscrit, ainsi que Madame la Professeure Marie-Dominique Galibert d’avoir accepté de participer à ce jury de thèse. J’exprime toute ma gratitude au Dr Marylène Chollet-Krugler pour avoir guidé mes pas dès les premiers jours et tout au long de ces trois années. Je la remercie particulièrement pour sa disponibilité et sa grande gentillesse, son écoute et sa patience. -
Ecosystems Mario V
Ecosystems Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, Cristina Branquinho, Jean-Claude Dutay, Monia El Bour, Frédéric Médail, Meryem Mojtahid, et al. To cite this version: Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, et al.. Ecosystems. Cramer W, Guiot J, Marini K. Climate and Environmental Change in the Mediterranean Basin -Current Situation and Risks for the Future, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp.323-468, 2021, ISBN: 978-2-9577416-0-1. hal-03210122 HAL Id: hal-03210122 https://hal-amu.archives-ouvertes.fr/hal-03210122 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Chapter 4 Ecosystems Coordinating Lead Authors: Mario V. Balzan (Malta), Abed El Rahman Hassoun (Lebanon) Lead Authors: Najet Aroua (Algeria), Virginie Baldy (France), Magda Bou Dagher (Lebanon), Cristina Branquinho (Portugal), Jean-Claude Dutay (France), Monia El Bour (Tunisia), Frédéric Médail (France), Meryem Mojtahid (Morocco/France), Alejandra Morán-Ordóñez (Spain), Pier Paolo Roggero (Italy), Sergio Rossi Heras (Italy), Bertrand Schatz (France), Ioannis N. -
Marine Natural Products: a Source of Novel Anticancer Drugs
marine drugs Review Marine Natural Products: A Source of Novel Anticancer Drugs Shaden A. M. Khalifa 1,2, Nizar Elias 3, Mohamed A. Farag 4,5, Lei Chen 6, Aamer Saeed 7 , Mohamed-Elamir F. Hegazy 8,9, Moustafa S. Moustafa 10, Aida Abd El-Wahed 10, Saleh M. Al-Mousawi 10, Syed G. Musharraf 11, Fang-Rong Chang 12 , Arihiro Iwasaki 13 , Kiyotake Suenaga 13 , Muaaz Alajlani 14,15, Ulf Göransson 15 and Hesham R. El-Seedi 15,16,17,18,* 1 Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden 2 Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden 3 Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria 4 Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt 5 Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt 6 College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China 7 Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan 8 Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany 9 Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt 10 Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait 11 H.E.J. Research Institute of Chemistry, -
Response of Desert Biological Soil Crusts to Alterations in Precipitation Frequency
Oecologia (2004) 141: 306–316 DOI 10.1007/s00442-003-1438-6 PULSE EVENTS AND ARID ECOSYSTEMS Jayne Belnap . Susan L. Phillips . Mark E. Miller Response of desert biological soil crusts to alterations in precipitation frequency Received: 15 May 2003 / Accepted: 20 October 2003 / Published online: 19 December 2003 # Springer-Verlag 2003 Abstract Biological soil crusts, a community of cyano- treatment. The crusts dominated by the soil lichen bacteria, lichens, and mosses that live on the soil surface, Collema, being dark and protruding above the surface, occur in deserts throughout the world. They are a critical dried the most rapidly, followed by the dark surface component of desert ecosystems, as they are important cyanobacterial crusts (Nostoc-Scytonema-Microcoleus), contributors to soil fertility and stability. Future climate and then by the light cyanobacterial crusts (Microcoleus). scenarios predict alteration of the timing and amount of This order reflected the magnitude of the observed precipitation in desert environments. Because biological response: crusts dominated by the lichen Collema showed soil crust organisms are only metabolically active when the largest decline in quantum yield, chlorophyll a, and wet, and as soil surfaces dry quickly in deserts during late protective pigments; crusts dominated by Nostoc-Scytone- spring, summer, and early fall, the amount and timing of ma-Microcoleus showed an intermediate decline in these precipitation is likely to have significant impacts on the variables; and the crusts dominated by Microcoleus physiological functioning of these communities. Using the showed the least negative response. Most previous studies three dominant soil crust types found in the western of crust response to radiation stress have been short-term United States, we applied three levels of precipitation laboratory studies, where organisms were watered and frequency (50% below-average, average, and 50% above- kept under moderate temperatures. -
Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc Punctiforme ATCC 29133
fmicb-07-00735 May 14, 2016 Time: 12:18 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository ORIGINAL RESEARCH published: 18 May 2016 doi: 10.3389/fmicb.2016.00735 Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133 Daniela Ferreira and Ferran Garcia-Pichel* School of Life Sciences, Arizona State University, Tempe, AZ, USA The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed Edited by: (1scyD, 1scyE, and 1scyF) and their phenotypes studied. Expectedly, 1scyE presents Martin G. Klotz, a scytoneminless phenotype, but no accumulation of the predicted intermediaries. City University of New York, USA Surprisingly, 1scyD retains scytonemin production, implying that it is not required Reviewed by: for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely Rajesh P. Rastogi, Sardar Patel University, India originated in a duplication event from scyE, and unlike other genes in the operon, it has Iris Maldener, not been subjected to purifying selection. -
Nanosims and Tissue Autoradiography Reveal Symbiont Carbon fixation and Organic Carbon Transfer to Giant Ciliate Host
The ISME Journal (2018) 12:714–727 https://doi.org/10.1038/s41396-018-0069-1 ARTICLE NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host 1 2 1 3 4 Jean-Marie Volland ● Arno Schintlmeister ● Helena Zambalos ● Siegfried Reipert ● Patricija Mozetič ● 1 4 2 1 Salvador Espada-Hinojosa ● Valentina Turk ● Michael Wagner ● Monika Bright Received: 23 February 2017 / Revised: 3 October 2017 / Accepted: 9 October 2017 / Published online: 9 February 2018 © The Author(s) 2018. This article is published with open access Abstract The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to fi 1234567890();,: follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells x substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. -
Zoothamnium Ignavum Sp
RESEARCH ARTICLE A Novel Colonial Ciliate Zoothamnium ignavum sp. nov. (Ciliophora, Oligohymeno- phorea) and Its Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls Lukas Schuster*, Monika Bright University of Vienna, Departmentof Limnology and Bio-Oceanography, Althanstraße 14, A-1090 Vienna, Austria * [email protected] a11111 Abstract Symbioses between ciliate hosts and prokaryote or unicellular eukaryote symbionts are widespread. Here, we report on a novel ciliate species within the genus Zoothamnium Bory de St. Vincent, 1824, isolated from shallow-water sunken wood in the North Adriatic Sea OPEN ACCESS (Mediterranean Sea), proposed as Zoothamnium ignavum sp. nov. We found this ciliate Citation: Schuster L, Bright M (2016) A Novel species to be associated with a novel genus of bacteria, here proposed as “Candidatus Colonial Ciliate Zoothamnium ignavum sp. nov. Navis piranensis” gen. nov., sp. nov. The descriptions of host and symbiont species are (Ciliophora, Oligohymeno-phorea) and Its based on morphological and ultrastructural studies, the SSU rRNA sequences, and in situ Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls. PLoS ONE hybridization with symbiont-specific probes. The host is characterized by alternate micro- 11(9): e0162834. doi:10.1371/journal.pone.0162834 zooids on alternate branches arising from a long, common stalk with an adhesive disc. Editor: Jonathan H. Badger, National Cancer Three different types of zooids are present: microzooids with a bulgy oral side, roundish to Institute,UNITED STATES ellipsoid macrozooids, and terminal zooids ellipsoid when dividing or bulgy when undividing. Received: June 9, 2016 The oral ciliature of the microzooids runs 1¼ turns in a clockwise direction around the peri- stomial disc when viewed from inside the cell and runs into the infundibulum, where it Accepted: August 29, 2016 makes another ¾ turn. -
SR-SAG2 Report Refsappsfigcaps V25
References : Abramov, O. and Kring, D.A. (2005) Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. 110:E12S09. Acuña, M.H., Connerney, J.E.P., Ness, N.F., Lin, R.P., Mitchell, D., Carlson, C.W., McFadden, J., Anderson, K.A., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P. (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER Experiment. Science 284:790–793. Aharonson, O. and Schorghofer, N. (2006) Subsurface ice on Mars with rough topography. J. Geophys. Res. 111:E11007, doi:10.1029/2005JE002636. Aharonson, O., Schorghofer, N., and Gerstell, M.F. (2003) Slope streak formation and dust deposition rates on Mars. J. Geophys. Res. (Planets) 108:5138. Aller, R.C. and Rude, P.D. (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52:751–765. Amato, P. and Christner, B.C. (2009) Energy metabolism response to low-temperature and frozen conditions in psychrobacter cryohalolentis. Appl. Environ. Microbiol. 75:711–718. Appelbaum, J. and Flood, D.J. (1990) Solar radiation on Mars. Solar Energy 45:353–363. Armstrong, J.C., Nielson, S.K., and Titus, T.N. (2007) Survey of TES high albedo events in Mars’ northern polar craters. Geophys. Res. Lett. 34:L01202, doi:10.1029/2006GL027960. Armstrong, J.C., Titus, T.N., and Kieffer, H.H. (2005) Evidence for subsurface water ice in Korolev crater, Mars. Icarus 174:360–372. Arvidson, R.E., Adams, D., Bonfiglio, G., Christensen, P., Cull, S., Golombek, M., Guinn, J., Guinness, E., Heet, T., Kirk, R., Knudson, A., Malin, M., Mellon, M., McEwen, A., Mushkin, A., Parker, T., Seelos, F., Seelos, K., Smith, P., Spencer, D., Stein, T., Tamppari, L. -
Secondary Metabolites in Cyanobacteria
Chapter 2 Secondary Metabolites in Cyanobacteria BethanBethan Kultschar Kultschar and Carole LlewellynCarole Llewellyn Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.75648 Abstract Cyanobacteria are a diverse group of photosynthetic bacteria found in marine, fresh- water and terrestrial habitats. Secondary metabolites are produced by cyanobacteria enabling them to survive in a wide range of environments including those which are extreme. Often production of secondary metabolites is enhanced in response to abiotic or biotic stress factors. The structural diversity of secondary metabolites in cyanobacteria ranges from low molecular weight, for example, with the photoprotective mycosporine- like amino acids to more complex molecular structures found, for example, with cyano- toxins. Here a short overview on the main groups of secondary metabolites according to chemical structure and according to functionality. Secondary metabolites are intro- duced covering non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids and isoprenoids. Functionality covers production of cyanotoxins, photoprotection and anti- oxidant activity. We conclude with a short introduction on how secondary metabolites from cyanobacteria are increasingly being sought by industry including their value for the pharmaceutical and cosmetics industries. Keywords: cyanobacteria, secondary metabolites, nonribosomal peptides, polyketides, alkaloids, isoprenoids, cyanotoxins, mycosporine-like amino acids, scytonemin, phycobiliproteins, biotechnology, pharmaceuticals, cosmetics 1. Introduction 1.1. Cyanobacteria Cyanobacteria are a diverse group of gram-negative photosynthetic prokaryotes. They are thought to be one of the oldest photosynthetic organisms creating the conditions that resulted in the evolution of aerobic metabolism and eukaryotic photosynthesis [1, 2]. They © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons © 2018 The Author(s). -
Special Regions’’: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)
ASTROBIOLOGY Volume 14, Number 11, 2014 News & Views ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2014.1227 A New Analysis of Mars ‘‘Special Regions’’: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2) John D. Rummel,1 David W. Beaty,2 Melissa A. Jones,2 Corien Bakermans,3 Nadine G. Barlow,4 Penelope J. Boston,5 Vincent F. Chevrier,6 Benton C. Clark,7 Jean-Pierre P. de Vera,8 Raina V. Gough,9 John E. Hallsworth,10 James W. Head,11 Victoria J. Hipkin,12 Thomas L. Kieft,5 Alfred S. McEwen,13 Michael T. Mellon,14 Jill A. Mikucki,15 Wayne L. Nicholson,16 Christopher R. Omelon,17 Ronald Peterson,18 Eric E. Roden,19 Barbara Sherwood Lollar,20 Kenneth L. Tanaka,21 Donna Viola,13 and James J. Wray22 Abstract A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003).