Evolution of Scaphinotus Petersi (Coleoptera: Carabidae) and the Role of Climate and Geography in the Madrean Sky Islands of Southeastern Arizona, USA

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Scaphinotus Petersi (Coleoptera: Carabidae) and the Role of Climate and Geography in the Madrean Sky Islands of Southeastern Arizona, USA YQRES-03387; No. of pages: 10; 4C: 3, 5 Quaternary Research xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Quaternary Research journal homepage: www.elsevier.com/locate/yqres Evolution of Scaphinotus petersi (Coleoptera: Carabidae) and the role of climate and geography in the Madrean sky islands of southeastern Arizona, USA Sara Gran Mitchell ⁎, Karen A. Ober Department of Biology, College of the Holy Cross, PO Box B, 1 College St., Worcester, MA 01610, USA article info abstract Article history: Geographically isolated environments such as the conifer forests atop the Madrean “sky islands” in southeastern Received 21 May 2012 Arizona provide natural laboratories for studying factors involved in speciation and origins of biodiversity. Using Available online xxxx molecular and geospatial analyses, we examine beetle population phylogeny, regional climate records, and the Quaternary paleobiogeography of forests to evaluate four hypothetical scenarios regarding the current Keywords: geographic and population genetic patterns of Scaphinotus petersi. Scaphinotus petersi is a large, flightless beetle Arizona that resides in the Madrean conifer forests above ~1900 m asl. Our results do not support the current hypothesis Sky islands Quaternary that S. petersi populations found on seven separate mountain ranges are genetically distinct and separated as Beetles temperatures warmed after the Last Glacial Maximum (LGM). Rather, we show that only some of the ranges Molecular evolution hold genetically distinct populations, and the timing of separation among the populations does not appear to Population divergence coincide with specific climatic events such as warming trends. In addition, we show that predicted changes to Paleobiogeography the climate of the Madrean sky islands may result in the disappearance of S. petersi from some of the lower ranges Climate by the end of this century. © 2012 University of Washington. Published by Elsevier Inc. All rights reserved. Introduction first hypothesis, cooler and/or wetter climate conditions in the south- western USA during the late Pleistocene favored more widely distributed The Madrean “sky islands” region of southeastern Arizona consists of conifer forests, and thus S. petersi habitat, at lower altitude. Divergence isolated forested mountain ranges that rise above a relatively flat prairie, occurred after post-Last Glacial Maximum (LGM) warming caused the scrub, and desert environment. Steep precipitation and temperature lower limit of conifer forests to contract uphill, eventually disconnecting gradients with altitude give rise to a series of ecological successions on forests and thus separating the beetle populations. If true, we would sky islands, and the ecosystems atop these ranges are sufficiently sepa- predict the following results from our genetic and paleobiogeographic rated from other suitable habitats such that the remoteness promotes analyses: 1) Beetle populations on different ranges will be genetically differentiation of organisms that live there. Such environments provide distinct from the others (in other words, each of the populations will natural laboratories for studying the processes involved in speciation be “monophyletic”). 2) Populations on ranges with conifer forests that and origins of biodiversity of endemic organisms (e.g., Brown, 1971; connect with the least amount of lowering or are close together will be Warshall, 1994). One such organism is the flightless, ground-dwelling more genetically similar and more recently separated than populations beetle, Scaphinotus petersi, characterized by Ball (1966).Today,S. petersi on ranges that require more conifer forest lowering to connect or are is found only in the Madrean montane conifer forest ecosystem (here separated by larger distances. 3) Now-separated populations should referred to as “conifer forests”) above ~1900 m elevation. According to have common ancestors during cooler, wetter times such as the Last Ball (1966), beetle populations on several sky island mountain ranges Glacial Maximum (LGM) and divergence should occur after the initiation have distinct morphological characteristics; therefore, Ball concluded of warmer or drier times during the Holocene. 4) Independent analyses that these ranges now host separate S. petersi subspecies. In this study, of conifer forest paleobiogeography and other paleoecological data will we examine S. petersi phylogeny, regional climate records, and the show that forests were connected during the cooler, possibly wetter paleobiogeography of Madrean montane conifer forests to test four hy- conditions thought to exist during the Pleistocene. potheses that could explain current geographic and population genetic A second possible scenario is that beetle dispersal can occur regard- patterns of this endemic beetle. less of habitat connectivity or proximity (no “island” effect), and is thus Ball (1966) hypothesized that all S. petersi subspecies were derived completely decoupled from changes in climate or forest biogeography. from a common ancestral population that once moved freely between In this scenario, we predict the following: 1) Genetic analysis of beetle mountain ranges when forests were more extensive. According to this populations will show evidence of a diversity of lineages (populations may be “polyphyletic” and contain distantly related individuals). ⁎ Corresponding author. Fax: +1 508 793 2696. 2) There may not be any relationship between mountain range proxim- E-mail address: [email protected] (S.G. Mitchell). ity or saddle altitude and the genetic relatedness of beetle populations. 0033-5894/$ – see front matter © 2012 University of Washington. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.yqres.2012.11.001 Please cite this article as: Mitchell, S.G., Ober, K.A., Evolution of Scaphinotus petersi (Coleoptera: Carabidae) and the role of climate and geography in the Madrean sky islands of southeastern Arizona, USA, Quaternary Research (2012), http://dx.doi.org/10.1016/j.yqres.2012.11.001 2 S.G. Mitchell, K.A. Ober / Quaternary Research xxx (2012) xxx–xxx 3) Climate conditions were not necessarily favorable for forest connec- conifer forests that occur on the highest mountain ranges in southeastern tivity during the timeframe represented by the phylogenetic tree. 4) Arizona. Evidence for gene flow or dispersal (the movement of one or more indi- viduals from one range to another) can occur during warm and/or dry Study area climate conditions. 5) The genetic data may be consistent with the re-population of ranges that could have lost and then regained their The Madrean sky islands area encompasses a nearly 200,000 km2 forests during the Holocene. area of southeastern Arizona, southwestern New Mexico and north- A third possible scenario is that the S. petersi populations were ern Mexico. This region is notable for its relatively small but high once fully connected and are now isolated, but they have not been (>2000 m) mountain ranges separated by low (b1000 m) topogra- separated long enough to diverge into distinct phylogenetic groups. phy. S. petersi populations are restricted to a subset of ranges: the In this scenario, 1) there would be no population genetic structure Pinal, Pinaleño, Santa Catalina, Rincon, Santa Rita, Chiricahua, and or genetic divergence seen among the mountain ranges and isolated Huachuca Mountains (Ball, 1966;Fig.2).S. petersi has been sighted populations would not fall into distinct monophyletic groups, and but not formally recorded in the Galliuros, Sierra Anchas, and Mogollon 2) there will be no geographic relationship to genetic structure, and Rim (K. Will and G. Ball, pers. comm., 2010). 3) the timing of divergence will not be dependent on climatic conditions. Tectonically, the Madrean sky island region is located in the Basin and A final scenario is a combination of the above. Perhaps some ranges RangeprovinceofNorthAmerica.Themountainrangeshereformedasa are more geographically isolated than others, and thus have distinct, result of the extension and uplift, likely in two stages (Wagner and possibly monophyletic beetle populations. But in this scenario, dispersal Johnson, 2006). The last period of peak uplift likely occurred between may occur between some mountains despite unfavorable climates or a 12 and 6 Ma (Wagner and Johnson, 2006). Due to the geometry of ex- lack of evidence for forest connectivity. In this last scenario, we might tension, the ranges are aligned along two major NW–SE trending ridges. see: 1) A complex phylogenetic tree, with some monophyletic and The ridges are separated by broad expanses, and along ridges, peaks are some polyphyletic groups of beetles on individual ranges. 2) A complex often separated by narrow but deep canyons. The San Pedro River sepa- relationship between mountain range geography and genetic similarity rates the two ridges, and the Gila River separates the northernmost Pinal and divergence times. 3) Climate conditions and their relationship to Mountains from all others to the south. forest connectivity may be irrelevant to the timing of beetle divergence. The steep topographic gradients in the area are associated with gradi- We evaluate these four scenarios by utilizing modern DNA sequenc- ents in temperature and precipitation. These climate gradients in turn ing and analysis tools, a GIS-based analysis of forest paleobiogeography, generate a rich diversity of ecosystems in a relatively small geographic and an analysis of geographic and climatic
Recommended publications
  • Biological Control of Lantana, Prickly Pear, and Hamakua Pamakani Inhawah: a Review and Update
    BIOLOGICAL CONTROL OF LANTANA, PRICKLY PEAR, AND HAMAKUA PAMAKANI INHAWAH: A REVIEW AND UPDATE Clifton J. Davis, Ernest Yoshioka, and Dina Kageler ABSTRACT The biological control of noxious weeds in Hawai`i has been carried on intermittently since 1902, when insects and diseases of lantana (Lantana camara) were sought in Mexico by the Territorial Board of Agriculture and Forestry (now Hawai`i Department of Agriculture). This approach was subsequently employed for the control of 20 other noxious weed pests between the 1940s and 1970s. Lantana was the first weed to be controlled by this method in the U.S. Results were very dramatic in some areas of the State, especially after later introductions by Hawai`ian and Australian entomologists resulted in heavy stress on lantana. In addition to lantana, excellent results have been obtained in the biological control of cacti (Opuntia spp.), and Hamakua pamakani (Ageratina riparia). Prior to the introduction of cactus insects in 1949, 66,000 a (26,400 ha) of Parker Ranch range lands on Hawai`i Island were infested with cacti. By 1965, 7,610 a (< 3,080 ha) remained infested, the result of three introduced insects and an accidentally introduced fungus disease; the red-fruited variety of cactus is particularly susceptible to the fungus. A spineless variety of the cactus occurs in the 'Ainahou-Poliokeawe Pali sector of Hawai`i Volcanoes National Park, and biocontrol efforts are in progress. With the introduction of insects from Mexico and a foliar fungus disease from Jamaica, Hamakua pamakani is under excellent control on many ranch as well as privately owned and government lands on Hawai`i Island.
    [Show full text]
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • DARKLING BEETLE Or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes Spp
    DARKLING BEETLE or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes spp Range: Found worldwide. 100 species in this genus in California. Habitat: Forests, grasslands, and deserts. Found under rocks and logs during the day. Niche: Herbivorous, terrestrial, nocturnal Diet: Wild: Scavenge on a wide variety of decaying and fresh plant and animal matter Zoo: Apple, monkey chow, lettuce Special Adaptations: The forewing (elytra) is fused so this beetle is flightless. They have chewing mouthparts and adults have a hard exoskeleton, smooth and black and are a little over an inch long. Antennae are thread-like, but some species’ are slightly enlarged at the terminal end and appear club-like. Darkling beetles undergo a complete metamorphosis. The eggs are laid in soil. The mealworm is the larval state of the darkling beetle and may molt 9-20 times. The adults will live 3-15 years. Compound eyes are kidney-shaped or notched rather than round. These beetles do not need to drink and can produce water metabolically; also their wings are fused to reduce water loss. Other: When disturbed, they will stand on their heads and elevate their rear end and emit a foul-smelling odor. This emission makes them unpalatable to would-be predators. Hence an alternate common name of “stink beetle”. They are sexually dimorphic. The cactus longhorn beetle mimics the darkling beetle because of the smell. Complete metamorphosis. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ DERMESTID BEETLE or SKIN BEETLE Class Order Family Genus Species Insecta Coleoptera Dermestidae Dermestes maculatus Range: Worldwide distribution except Antarctica Habitat: on dead animals Niche: Scavengers, omnivorous, terrestrial Diet: Wild: dry animal or plant material such as skin or pollen, animal hair, feathers, dead insects and natural fibers Zoo: Special Adaptations: Undergo complete metamorphosis.
    [Show full text]
  • Caracterização Proteometabolômica Dos Componentes Da Teia Da Aranha Nephila Clavipes Utilizados Na Estratégia De Captura De Presas
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS BIOLOGIA CELULAR E MOLECULAR Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas Franciele Grego Esteves Dissertação apresentada ao Instituto de Biociências do Câmpus de Rio . Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro São Paulo - Brasil Março/2017 FRANCIELE GREGO ESTEVES CARACTERIZAÇÃO PROTEOMETABOLÔMICA DOS COMPONENTES DA TEIA DA ARANHA Nephila clavipes UTILIZADOS NA ESTRATÉGIA DE CAPTURA DE PRESA Orientador: Prof. Dr. Mario Sergio Palma Co-Orientador: Dr. José Roberto Aparecido dos Santos-Pinto Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus de Rio Claro-SP, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro 2017 595.44 Esteves, Franciele Grego E79c Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas / Franciele Grego Esteves. - Rio Claro, 2017 221 f. : il., figs., gráfs., tabs., fots. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Mario Sergio Palma Coorientador: José Roberto Aparecido dos Santos-Pinto 1. Aracnídeo. 2. Seda de aranha. 3. Glândulas de seda. 4. Toxinas. 5. Abordagem proteômica shotgun. 6. Abordagem metabolômica. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedico esse trabalho à minha família e aos meus amigos. Agradecimentos AGRADECIMENTOS Agradeço a Deus primeiramente por me fortalecer no dia a dia, por me capacitar a enfrentar os obstáculos e momentos difíceis da vida.
    [Show full text]
  • B a N I S T E R I A
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]
  • Invertebrates
    State Wildlife Action Plan Update Appendix A-5 Species of Greatest Conservation Need Fact Sheets INVERTEBRATES Conservation Status and Concern Biology and Life History Distribution and Abundance Habitat Needs Stressors Conservation Actions Needed Washington Department of Fish and Wildlife 2015 Appendix A-5 SGCN Invertebrates – Fact Sheets Table of Contents What is Included in Appendix A-5 1 MILLIPEDE 2 LESCHI’S MILLIPEDE (Leschius mcallisteri)........................................................................................................... 2 MAYFLIES 4 MAYFLIES (Ephemeroptera) ................................................................................................................................ 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ............................................................................................................ 4 [unnamed] (Paraleptophlebia jenseni) ............................................................................................................ 4 [unnamed] (Siphlonurus autumnalis) .............................................................................................................. 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ...........................................................................................................
    [Show full text]
  • Ecology and Condition of the Ground Beetle Scaphinotus Angusticollis
    Ecology and Condition of the Ground Beetle Scaphinotus angusticollis and Distribution of its Prey in Pacific Northwest Riparian Forests by Susanne L. Lavallee B.Sc (University of British Columbia), 1994 M.Sc (University of British Columbia, Zoology), 1999 A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In THE FACULTY OF GRADUATE STUDIES (Forestry) THE UNIVERSITY OF BRITISH COLUMBIA September 2006 © Susanne L. Lavallee, 2006 Abstract I studied the population ecology of the flightless, forest-dwelling carabid beetle Scaphinotus angusticollis Fischer Von Waldheim (O. Coleoptera F. Carabidae) and several aspects of its body condition for their associations with forest harvesting. Comparison of population estimates revealed that catch-per-unit-effort estimates were not significantly different from more detailed analyses. In two years of trapping, S. angusticollis population densities were found to be significantly lower in clearcuts, as compared to 30 m riparian reserves and uncut forest, suggesting that riparian buffers provide adequate habitat to maintain populations of this terrestrial insect. Movement of S. angusticollis differed in the three habitats studied between years and treatments, with the greatest movement occurring in 30 m buffers in one year and in control sites the next. Clearcuts had the lowest amount of movement in both years. One of the known prey species for S. angusticollis, snails < 2 cm in diameter, were more abundant in clearcut habitat, with Ancotrema hybridum the most abundant species. Canonical correspondence analysis suggests that only A. hybridum were positively correlated with plant cover, and that other species abundances may rely on coarse, downed wood as cover.
    [Show full text]
  • Connecticut Department of Energy and Environmental Protection Summary of Public Comments Explanatory Statement for Final Regulations
    STATE OF CONNECTICUT 4/15/2015 Page 1 of 22 CONNECTICUT DEPARTMENT OF ENERGY AND ENVIRONMENTAL PROTECTION SUMMARY OF PUBLIC COMMENTS EXPLANATORY STATEMENT FOR FINAL REGULATIONS Proposed amendments to sections 26-306-4, 26-306-5, and 26-306-6 of the Regulations of Connecticut State Agencies. Proposed Amendments to Endangered, Threatened, and Species of Special Concern STATEMENT OF PURPOSE: As authorized pursuant to CGS section 26-306, the proposed amendments are to update the lists of species which are endangered, threatened or of special concern. Pursuant to CGS 26-307, the commissioner of the Department of Environmental Protection (DEEP) is required to review, at least every five years, the designation of species to determine whether species should be: (1) Added or removed from the list; or, if necessary, (2) change the designation. The Department held a public hearing to receive comments on the proposed amendment on March 31, 2015. The hearing record was open until April 14, 2015 at 4:30 pm for submission of written comments. Following is the wording of the proposed amendment as presented at the public hearing, a summary of comments received and the Department’s responses, and the recommended final wording for the amendment. Proposed Amendments at Time of Public Hearing of March 31, 2015 Section 1. Section 26-306-4 of the Regulations of State Agencies is amended to read as follows: Sec. 26-306-4. List of endangered species (a) The following mammal species are determined to be endangered: Cryptotis parva Least shrew Myotis leibii Eastern
    [Show full text]
  • ES Teacher Packet.Indd
    PROCESS OF EXTINCTION When we envision the natural environment of the Currently, the world is facing another mass extinction. past, one thing that may come to mind are vast herds However, as opposed to the previous five events, and flocks of a great diversity of animals. In our this extinction is not caused by natural, catastrophic modern world, many of these herds and flocks have changes in environmental conditions. This current been greatly diminished. Hundreds of species of both loss of biodiversity across the globe is due to one plants and animals have become extinct. Why? species — humans. Wildlife, including plants, must now compete with the expanding human population Extinction is a natural process. A species that cannot for basic needs (air, water, food, shelter and space). adapt to changing environmental conditions and/or Human activity has had far-reaching effects on the competition will not survive to reproduce. Eventually world’s ecosystems and the species that depend on the entire species dies out. These extinctions may them, including our own species. happen to only a few species or on a very large scale. Large scale extinctions, in which at least 65 percent of existing species become extinct over a geologically • The population of the planet is now growing by short period of time, are called “mass extinctions” 2.3 people per second (U.S. Census Bureau). (Leakey, 1995). Mass extinctions have occurred five • In mid-2006, world population was estimated to times over the history of life on earth; the first one be 6,555,000,000, with a rate of natural increase occurred approximately 440 million years ago and the of 1.2%.
    [Show full text]
  • Problems and Pests of Agave, Aloe, Cactus and Yucca
    ARIZONA COOPERATIVE E TENSION Problems and Pests of Agave, Aloe, Cactus and Yucca AZ 1399 October 2008 Problems and Pests of Agave, Aloe, Cactus and Yucca Jack Kelly Commercial Horticulture Agent Pima County Cooperative Extension Mary Olsen Extension Plant Pathology Department of Plant Sciences This information has been reviewed by university faculty. cals.arizona.edu/pubs/garden/az1399.pdf AZ1399 Revised October 2008 (First published July 2006) Cooperative Extension College of Agriculture and Life Sciences The University of Arizona Tucson, Arizona 85721 Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture & Life Sciences, The University of Arizona. The University of Arizona is an equal opportunity, affirmative action institution. The University does not discriminate on the basis of race, color, religion, sex, national origin, age, disability, veteran status, or sexual orientation in its programs and activities. Table of Contents Abiotic (non-living) problems .............................................................................................................5 Selecting the correct plant and planting location .........................................................................5 Freeze Damage .........................................................................................................................5 Sunburn ....................................................................................................................................5
    [Show full text]
  • Aquatic Insects
    AQUATIC INSECTS Challenges to Populations This page intentionally left blank AQUATIC INSECTS Challenges to Populations Proceedings of the Royal Entomological Society’s 24th Symposium Edited by Jill Lancaster Institute of Evolutionary Biology University of Edinburgh Edinburgh, UK and Robert A. Briers School of Life Sciences Napier University Edinburgh, UK CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org CAB International 2008. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Royal Entomological Society of London. Symposium (24th : 2007 : University of Edinburgh) Aquatic insects : challenges to populations : proceedings of the Royal Entomological Society’s 24th symposium / edited by Jill Lancaster, Rob A. Briers. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-396-8 (alk. paper) 1. Aquatic insects--Congresses. I. Lancaster, Jill. II. Briers, Rob A. III. Title. QL472.R69 2007 595.7176--dc22 2008000626 ISBN: 978 1 84593 396 8 Typeset by AMA Dataset, Preston, UK Printed and bound in the UK by Cromwell Press, Trowbridge The paper used for the text pages in this book is FSC certifi ed.
    [Show full text]
  • Newsletter #25.Pub
    University of California, Riverside No. 26, Summer 2005 Friends of the Entomology Research Museum Newsletter Editor: Doug Yanega Proofing Editors: G. Ballmer, D. Hawks, R. Vetter FERM Officers FERM Annual Meeting! President : Alexis Park Vice-president: Ken Osborne Saturday, February 5th 2005 Treasurer: David Hawks Secretary: Marcella Waggoner 6:30 PM, UCR Entomology Building E-mails: [email protected], [email protected] [email protected], [email protected] Guest Speaker: Dr. Peter S. Cranston “Travels in Remote Gondwana: Midges in Deep Time” Editorial transition and apology No doubt it hasn’t escaped peoples’ attention that this news- letter is long overdue - that we had no Spring 2005 issue. Ea- It’s that time again! Our Annual gle-eyed regulars may also have noticed a slight shift in the th names at the top of the page, as well. Without going into grue- Meeting will be February 5 (Saturday) start- some details, our long-standing editor, Rick Vetter, has re- ing at 6:30 PM. Our speaker is Dr. Pete cently experienced a change in his position here at UCR, ne- Cranston, Professor of Entomology from the cessitating—at least temporarily—that he would be unable to University of California, Davis. Dr. Cran- work on the Newsletter. We were not really prepared for this ston teaches courses in systematic entomol- eventuality, and it’s taken some time to figure out what, ex- actly, our “Plan B” would be. So, for the foreseeable future, it ogy and biodiversity, and his research inter- looks like I, Doug Yanega, will have to take over the primary ests include the systematics, ecology, and Editorial duties, despite my glaring lack of familiarity with the biogeography of aquatic insects, particularly proper use of Microsoft Publisher.
    [Show full text]