Climate impacts on vegetation and fire dynamics since the last deglaciation at Moossee (Switzerland) Fabian Rey1,2,3, Erika Gobet1,2, Christoph Schwörer1,2, Albert Hafner2,4, Sönke Szidat2,5, Willy Tinner1,2 5 1Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland 2Oeschger Centre for Climate Change Research, University of Bern, CH-3013 Bern, Switzerland 3Geoecology, Department of Environmental Sciences, University of Basel, CH-4056 Basel, Switzerland 4Institute of Archaeological Sciences, University of Bern, CH-3012 Bern, Switzerland 5Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland 10 Correspondence to: Fabian Rey (
[email protected]) Abstract. Since the Last Glacial Maximum (LGM, end ca. 19,000 cal BP) Central European plant communities were shaped by changing climatic and anthropogenic disturbances. Understanding long-term ecosystem reorganizations in response to past environmental changes is crucial to draw conclusions about the impact of future climate change. So far, it has been difficult to address the post-deglaciation timing and ecosystem dynamics due 15 to a lack of well-dated and continuous sediment sequences covering the entire period after the LGM. Here, we present a new palaeoecological study with exceptional chronological time control using pollen, spores and microscopic charcoal from Moossee (Swiss Plateau, 521 m a.s.l.) to reconstruct the vegetation and fire history over the last ca. 19,000 years. After lake formation in response to deglaciation, five major pollen-inferred ecosystem rearrangements occurred at ca. 18,800 cal BP (establishment of steppe tundra), 16,000 cal BP (spread 20 of shrub tundra), 14,600 cal BP (expansion of boreal forests), 11,600 cal BP (establishment of first temperate deciduous tree stands composed of e.g.