Coral Sea Fishery 'Strategic Assessment'

Total Page:16

File Type:pdf, Size:1020Kb

Coral Sea Fishery 'Strategic Assessment' STRATEGIC ASSESSMENT REPORT September 2010 CORAL SEA FISHERY 1 Strategic Assessment Report – Coral Sea Fishery - August 2010 Executive Summary This report has been prepared by AFMA for the assessment of the Coral Sea Fishery (CSF) as an approved Wildlife Trade Operation under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) by the Department of the Environment, Water, Heritage and the Arts (DEWHA). On 16 November 2007, DEWHA advised AFMA that it was satisfied that the operation of the CSF was consistent with the objectives of the wildlife trade provisions in Part 13A of the EPBC Act, and that it is unlikely to be detrimental to the survival or conservation status of any taxon to which the fishery operation relates, or threaten any relevant ecosystem in the short term. The Wildlife Trade Operation (WTO) approval was provided for a relatively short period of 16 months, to provide for reassessment of the fishery once key management arrangements such as the ecological risk assessment and harvest strategy for the fishery were completed. The WTO approval has since been extended a number of times and is now due to expire on 19 November 2010. The WTO declaration was subject to conditions which have been outlined in this report and which have been met by AFMA. The CSF is a relatively small but diverse fishery, targeting a wide range of species with methods including line, trap, trawl and hand collection. Entry to the CSF is limited to the existing 16 fishing permits. The CSF operates over a large area encompassing a diverse range of habitats and species from east of Sandy Cape (Fraser Island) to east of Cape York. The Fishery commences east of the Great Barrier Reef Marine Park (GBRMP) and extends to the edge of the Australian Fishing Zone (AFZ). The CSF is part of the Coral Sea Conservation Zone, declared in 2009 by the Minister for Environment Protection, Heritage and the Arts. It excludes the areas of the Coringa-Herald and Lihou Reef National Nature Reserves. Together the Nature Reserves cover approximately 17,000 square kilometres of coral reef habitat and contribute significantly to conservation objectives in the region. The fishery is managed by AFMA in consultation with a range of stakeholders under the Fisheries Management Act 1991 (the Act). Policies such as harvest strategies, bycatch and discard work plans and voluntary industry codes also contribute to the management of the fishery. 2 Strategic Assessment Report – Coral Sea Fishery - September 2010 CONTENTS Executive Summary ................................................................................................................. 2 1 Description of the fishery ................................................................................................. 4 2 Management arrangements .............................................................................................. 9 3 Changes to management arrangements ......................................................................... 9 4 Consultation processes .................................................................................................. 11 5 Outcomes of review processes...................................................................................... 12 6 Harvest strategies – an overview ................................................................................... 12 7 Fishery sectors – gear and method descriptions......................................................... 13 8 Other types of permits .................................................................................................... 15 9 Allocation between fishing sectors ............................................................................... 16 10 Status of export approval/accreditation under the Environment Protection and Biodiversity Act 1999 ...................................................................................................... 16 11 Observers ......................................................................................................................... 16 12 Catch verification............................................................................................................. 17 13 Vessel Monitoring Systems ............................................................................................ 17 14 Protected species, threat abatement plans, recovery plans, domestic and international agreements................................................................................................ 17 15 Impacts of the fishery on the ecosystem ...................................................................... 18 16 Spatial issues................................................................................................................... 19 17 Performance of the fishery against objectives, performance indicators and performance measures................................................................................................... 19 18 Compliance risks present in the fishery and actions taken to reduce these risks ... 20 19 Compliance with threat abatement plans, recovery plans, domestic and international agreements................................................................................................ 20 20 Catch data ........................................................................................................................ 21 21 Total catch of target species (including retained and discarded catch) .................... 21 22 Total catch of target species taken in other fisheries.................................................. 22 23 Catch of byproduct species (reported by species) ...................................................... 24 24 Total catch of bycatch species (reported by species if possible)............................... 24 25 Harvest by each sector (i.e. commercial, recreational, indigenous and illegal)........ 24 26 Effort data including information on any trends........................................................... 25 27 Spatial issues/trends....................................................................................................... 27 28 Status of target stock ...................................................................................................... 29 29 Interactions with protected species............................................................................... 29 30 Impacts of the fishery on the ecosystem ...................................................................... 30 31 Progress in implementation of recommendations and conditions resulting from the previous assessment of the fishery .............................................................................. 32 32 Research and Monitoring................................................................................................ 34 33 References ....................................................................................................................... 37 34 Appendices ...................................................................................................................... 37 3 Strategic Assessment Report – Coral Sea Fishery - September 2010 1 Description of the fishery The CSF lies east of the Great Barrier Reef Marine Park (GBRMP) and extends to the edge of the Australian Fishing Zone (Figure 1). The fishery extends north from Sandy Cape (Fraser Island), to Cape York. It excludes the areas of the Coringa-Herald and Lihou Reef National Nature Reserves. Together the Nature Reserves cover approximately 17,000 square kilometres of coral reef habitat. The CSF often experiences adverse weather conditions which can make fishing difficult at certain times of the year. Figure 1. Area of the Coral Sea Fishery 4 Strategic Assessment Report – Coral Sea Fishery - August 2010 The CSF is a diverse fishery employing a range of fishing methods to target a wide variety of species. Participation in the CSF is limited to 16 fishing permits, this means that new entrants to the fishery must purchase an existing permit and transfer this into their name before entering the fishery. AFMA maintains a register of all Commonwealth fishing permits on its website. Table 1. Summary of the Coral Sea Fishery by sector Number of Target species Fishing method/gear Permits Trawl and Tropical finfish and 2 Otter trawl, demersal finfish traps Trap crustaceans Demersal longlines, trotlines, droplines, Classes Chondrichthyes handlines and demersal finfish traps. Line and 8 (cartilaginous fishes) and Automatic baiting is available for use with Trap Osteichthyes (bony fishes) the longline method, subject to application and additional conditions being met. Tropical Rock Lobsters (Panulirus ornatus, Lobster and P. v e r s ic o l or and to a lesser Hand collection with or without underwater 3 Trochus degree P. pennisiulatus) breathing apparatus. Trochus (Trochus niloticus or Tectus pyramis) Classes Chondrichthyes (cartilaginous fishes) and Cast, scoop and seine nets, and handlines Osteichthyes (bony fishes) with barbless hooks may be used with or Live rock (limestone covered without the aid of underwater breathing Aquarium 2 with coralline algae and apparatus other encrusting species) Live rock collection using non mechanical Coral is not permitted to be implements taken in the CSF. Amberfish (Thelenota anax) Blackfish (probably Actinopynga miliaris) Black teatfish (Holothuria whitmaei) Greenfish (Stichopus chloronotus) Lollyfish (Holothuria atra) Prickly redfish (Thelenota ananas) Sea Hand collection with
Recommended publications
  • Tetraodontiformes: Tetraodontidae) and Some Related Species, Including a New Species from Hawaii!
    Pacific Science (1983), vol. 37, no. 1 © 1983 by the University of Hawaii Press. All rights reserved The Status of Torquigener hypselogeneion (Bleeker) (Tetraodontiformes: Tetraodontidae) and Some Related Species, including a New Species from Hawaii! GRAHAM S. H ARDy 2 ABSTl~ACT: Torquigener .hypselogeneion (Bleeker) and T.jiorealis (Cope) are redescnbed, and a neotype IS proposed for the former. That species differs from T. jiorealis in having smaller eye ~iameter , shorter caudal peduncle length, usuall!, lower.fin ray counts, and different color pattern. Torquigener randalli n:s~. IS descnbed .from six specimens from Oahu, Hawaii, differing from the similar T.jiorealis In shape ofdorsal and anal fins, a usually lower dorsal and anal fin ray count, and in color pattern. 1:'1 MARCH 1852 Bleeker published the descrip­ METHODS tion of a small pufferfish, which he called Measurements (taken to 2 significant Tetraodon hypselogeneion, based on speci­ figures) were by dial caliper, in a manner mens from Amboina (Ambon) (Bleeker similar to that outlined by Dekkers (1975). 1852a). In subsequent descriptions, he ex­ All measurements are from preserved speci­ tended the known distribution to cover much mens . Fin ray counts include all visible rays, ?f the D~tch Ea st Indies (Indonesia), and both branched and unbranched, and fin ray In 1865 Included examples, considered as lengths were determined from the embedded hypselogeneion, reported from the Red Sea as base. One example each of T. jiorealis and Tetrodon honckenii (not ofBloch), by Riippell T. randalli was cleared and stained and (1828). A central Pacific species, described as all others x-rayed, for examination of their ! etrodon .f!Nealis by Cope (1871), was later osteology.
    [Show full text]
  • Seafood Banquets in Beijing: Consumer Perspectives and Implications for Environmental Sustainability
    [Downloaded free from http://www.conservationandsociety.org on Thursday, June 27, 2019, IP: 139.191.247.3] Conservation and Society 12(2): 218-228, 2014 Article Seafood Banquets in Beijing: Consumer Perspectives and Implications for Environmental Sustainability Michael Fabinyia,# and Neng Liub aAustralian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia bDepartment of Sociology, Peking University, Beijing, China #Corresponding author. E‑mail: [email protected] Abstract Understanding the social drivers of increased seafood consumption in China, such as consumer perspectives in banquets, will be crucial if practical strategies to introduce sustainability into this market are to be successfully implemented. Based on 34 semi‑structured interviews with key informants including seafood restaurant operators, seafood consumers and seafood traders, this study investigated seafood consumer attitudes and behaviours in Beijing seafood restaurants. The results and discussion is divided into sections that address the popularity and reasons behind the popularity of: 1) seafood banquets in general; 2) fish at banquets; 3) other forms of seafood at banquets; and 4) preferred characteristics and qualities of seafood at banquets. The consumption of certain types of seafood such as live reef fish and sea cucumber is becoming increasingly popular, while the consumption of shark fin is decreasing in popularity. Awareness and concern about sustainability and traceability issues were relatively low, and more significant themes for understanding consumer preferences about seafood include social status and prestige, food safety and quality, and health and nutrition. The paper concludes by demonstrating the implications for market‑based interventions and government regulation. Keywords: China, consumption, markets, fisheries, banquets, seafood INTRODUCTION this seafood is imported from other countries.
    [Show full text]
  • Reef Snappers (Lutjanidae)
    #05 Reef snappers (Lutjanidae) Two-spot red snapper (Lutjanus bohar) Mangrove red snapper Blacktail snapper (Lutjanus argentimaculatus) (Lutjanus fulvus) Common bluestripe snapper (Lutjanus kasmira) Humpback red snapper Emperor red snapper (Lutjanus gibbus) (Lutjanus sebae) Species & Distribution Habitats & Feeding The family Lutjanidae contains more than 100 species of Although most snappers live near coral reefs, some species tropical and sub-tropical fi sh known as snappers. are found in areas of less salty water in the mouths of rivers. Most species of interest in the inshore fi sheries of Pacifi c Islands belong to the genus Lutjanus, which contains about The young of some species school on seagrass beds and 60 species. sandy areas, while larger fi sh may be more solitary and live on coral reefs. Many species gather in large feeding schools One of the most widely distributed of the snappers in the around coral formations during daylight hours. Pacifi c Ocean is the common bluestripe snapper, Lutjanus kasmira, which reaches lengths of about 30 cm. The species Snappers feed on smaller fi sh, crabs, shrimps, and sea snails. is found in many Pacifi c Islands and was introduced into They are eaten by a number of larger fi sh. In some locations, Hawaii in the 1950s. species such as the two-spot red snapper, Lutjanus bohar, are responsible for ciguatera fi sh poisoning (see the glossary in the Guide to Information Sheets). #05 Reef snappers (Lutjanidae) Reproduction & Life cycle Snappers have separate sexes. Smaller species have a maximum lifespan of about 4 years and larger species live for more than 15 years.
    [Show full text]
  • Catch and Effort Data
    Chapter 11: The Inland Waters River Fishery Information System CHAPTER 11: INLAND WATERS RIVER FISHERY INFORMATION SYSTEM 11.1 Background The Inland Waters River fishery is a multi-species, multi-gear fishery encompassing the South Australian sector of the River Murray and its backwaters (Map 11.1). Historically, the fishery was based on harvesting Murray cod (Maccullochella peelii peelii), golden perch (Macquaria ambigua), and bony bream (Nematalosa erebi). The fishery was restructured in July 2003 to a non-native dominate fishery and the commercial fishing for significant native species is now prohibited. The fishery is now based predominantly on the taking European carp (Cyprinus carpio) and redfin perch (Perca fluviatilis). There are a total of 6 licence holders who operate within the fishery. Prior to the restructure 30 license holders fished the river, each with a designated reach. Up to December 2007 SARDI production tables hold in excess of 270,000 daily records. Data is held from 1984/85 to current and is continually being updated. Refer to Figure 11.3 for an entity relationship diagram of the inland waters system that encompasses the River Fishery. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 81 Chapter 11: The Inland Waters River Fishery Information System Map 11.1: The inland waters river fishery – River Murray area designations. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 82 Chapter 11: The Inland Waters River Fishery Information System 11.2 Research Logbook Information Each licence holder is required to submit a daily fishing return by the 15th day of each month detailing their fishing activities for the previous month (Figure 11.1).
    [Show full text]
  • Snapper and Grouper: SFP Fisheries Sustainability Overview 2015
    Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Patrícia Amorim | Fishery Analyst, Systems Division | [email protected] Megan Westmeyer | Fishery Analyst, Strategy Communications and Analyze Division | [email protected] CITATION Amorim, P. and M. Westmeyer. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from www.fishsource.com. PHOTO CREDITS left: Image courtesy of Pedro Veiga (Pedro Veiga Photography) right: Image courtesy of Pedro Veiga (Pedro Veiga Photography) © Sustainable Fisheries Partnership February 2016 KEYWORDS Developing countries, FAO, fisheries, grouper, improvements, seafood sector, small-scale fisheries, snapper, sustainability www.sustainablefish.org i Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 EXECUTIVE SUMMARY The goal of this report is to provide a brief overview of the current status and trends of the snapper and grouper seafood sector, as well as to identify the main gaps of knowledge and highlight areas where improvements are critical to ensure long-term sustainability. Snapper and grouper are important fishery resources with great commercial value for exporters to major international markets. The fisheries also support the livelihoods and food security of many local, small-scale fishing communities worldwide. It is therefore all the more critical that management of these fisheries improves, thus ensuring this important resource will remain available to provide both food and income. Landings of snapper and grouper have been steadily increasing: in the 1950s, total landings were about 50,000 tonnes, but they had grown to more than 612,000 tonnes by 2013.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • Reproductive Biology of the Yellowspotted Puffer Torquigener Flavimaculosus (Osteichthyes: Tetraodontidae) from Gulf of Suez, Egypt
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(3): 503 – 511 (2019) www.ejabf.journals.ekb.eg Reproductive biology of the Yellowspotted Puffer Torquigener flavimaculosus (Osteichthyes: Tetraodontidae) from Gulf of Suez, Egypt. Amal M. Ramadan* and Magdy M. Elhalfawy Fish reproduction and spawning laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Egypt. *Corresponding author: [email protected] ARTICLE INFO ABSTRACT Article History: The present study assesses reproductive biology of Yellowspotted Received: May 1, 2019 Puffer Torquigener flavimaculosus, were collected seasonally from Accepted: Aug. 29, 2019 commercial catches at the Attaka fishing harbor in Suez from winter 2017 Online: Sept. 2019 until autumn 2018. The sex ratio was found 1:1.08 for male and female, _______________ respectively. The fish length at first sexual maturity (L50) was 8.2 cm for males and 9.5 cm for females. In addition, the allometric pattern of gonadal Keywords: growth was studied to validate the use of the gonado-somatic index (GSI) in Gulf Suez assessments of the reproductive cycle. The highest peak of GSI (10.5 ± T. flavimaculosus 1.012%) and (4.3 ± 0.084%) for female and male were recorded in summer, Yellowspotted Puffer respectively. Values for hepato-somatic index (HSI) is very high and strong Gonado-somatic index inverse relationship with gonado-somatic index (GSI) we inferred that lipid Hepato-somatic index reserves in the liver play an important role in gonad maturation and Somatic condition factor spawning. Somatic condition factor (Kr) also varied, albeit less so, Spawning throughout the year, suggesting that body fat and muscle play lesser roles in providing energy for reproduction.
    [Show full text]
  • Variations in Tetrodotoxin Levels in Populations of Taricha Granulosa
    www.nature.com/scientificreports OPEN Variations in tetrodotoxin levels in populations of Taricha granulosa are expressed in the morphology of their cutaneous glands Pedro Luiz Mailho-Fontana1*, Carlos Jared1, Marta Maria Antoniazzi1, Juliana Mozer Sciani 2, Daniel Carvalho Pimenta 1, Amber N. Stokes3, Taran Grant4, Edmund D. Brodie III5 & Edmund D. Brodie Jr.6 Tetrodotoxin (TTX), one of the most toxic substances in nature, is present in bacteria, invertebrates, fshes, and amphibians. Marine organisms seem to bioaccumulate TTX from their food or acquire it from symbiotic bacteria, but its origin in amphibians is unclear. Taricha granulosa can exhibit high TTX levels, presumably concentrated in skin poison glands, acting as an agent of selection upon predatory garter snakes (Thamnophis). This co-evolutionary arms race induces variation in T. granulosa TTX levels, from very high to undetectable. Using morphology and biochemistry, we investigated diferences in toxin localization and quality between two populations at the extremes of toxicity. TTX concentration within poison glands is related to the volume of a single cell type in which TTX occurs exclusively in distinctive secretory granules, suggesting a relationship between granule structure and chemical composition. TTX was detected in mucous glands in both populations, contradicting the general understanding that these glands do not secrete defensive chemicals and expanding currently held interpretations of amphibian skin gland functionality. Skin secretions of the two populations difered in low-mass molecules and proteins. Our results demonstrate that interpopulation variation in TTX levels is related to poison gland morphology. Tetrodotoxin (TTX) is one of the most toxic and well-studied but still mysterious natural products.
    [Show full text]
  • Surat Thani Blue Swimming Crab Fishery Improvement Project
    Surat Thani Blue Swimming Crab Fishery Improvement Project -------------------------------------------------------------------------------------------------------------------------------------- Milestone 33b: Final report of bycatch research Progress report: The study of fishery biology, socio-economic and ecosystem related to the restoration of Blue Swimming Crab following Fishery improvement program (FIP) in Bandon Bay, Surat Thani province. Amornsak Sawusdee1 (1) The Center of Academic Service, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160 The results of observation of catching BSC by using collapsible crab trap and floating seine. According to the observation of aquatic animal which has been caught by main BSC fishing gears; floating seine and collapsible crab trap, there were 176 kind of aquatic animals. The catch aquatic animals are shown in the table1. In this study, aquatic animal was classified into 11 Groups; Blue Swimming Crab (Portunus Pelagicus), Coelenterata (coral animals, true jellies, sea anemones, sea pens), Helcionelloida (clam, bivalve, gastropod), Cephalopoda (sqiud, octopus), Chelicerata (horseshoe crab), Hoplocari(stomatopods), Decapod (shrimp), Anomura (hermit crab), Brachyura (crab), Echinoderm (sea cucambers, sea stars, sea urchins), Vertebrata (fish). Vertebrata was the main group that was captured by BSC fishing gears, more than 70 species. Next are Helcionelloida and Helcionelloida 38 species and 29 species respectively. The sample that has been classified were photographed and attached in appendix 1. However, some species were classified as unknow which are under the classification process and reconcile. There were 89 species that were captured by floating seine. The 3 main group that were captured by this fishing gear are Vertebrata (34 species), Brachyura (20 species) Helcionelloida and Echinoderm (10 Species). On the other hand, there were 129 species that were captured by collapsible crab trap.
    [Show full text]
  • Elephant Fish
    Best Fish Guide 2009-2010 How sustainable is New Zealand seafood? (Ecological Assessments) Produced and Published by Royal Forest and Bird Protection Society of New Zealand, Inc. PO Box 631, Level One, 90 Ghuznee Street, Wellington. www.forestandbird.org.nz November 2009 Acknowledgements Forest & Bird with to thank anonymous reviewers for their peer review comments on this draft. We also thank Peta Methias, Annabel Langbein, Martin Bosely, Margaret Brooker, Lois Daish, Kelder Haines, Dobie Blaze, Rohan Horner and Ray McVinnie for permission to use their recipes on the website. Special thanks to our Best Fish Guide Ambassador Dobie Blaze, keyboard player with Fat Freddy’s Drop. Editing: Kirstie Knowles, Barry Weeber and Helen Bain Technical Advisor: Barry Weeber Cover Design: Rob Deliver Cover fish (Tarakihi): Malcolm Francis Photography: Malcolm Francis: blue cod, blue moki, blue shark, butterfish, groper/hapuku, hoki, jack mackerel, john dory, kahawai, kingfish, leather jacket, moonfish, paua, porbeagle shark, red gurnard, red snapper, scallop, school shark, sea perch, snapper, spiny dogfish, tarakihi, trevally and trumpeter. Peter Langlands: blue warehou, cockles, elephantfish, frostfish, lookdown dory, oyster, pale ghost shark, queen scallops, red cod, rig/lemonfish, rubyfish and scampi. Ministry of Fisheries: albacore tuna, bigeye tuna, blue mackerel, pacific bluefin tuna, skipjack tuna, southern bluefin tuna and swordfish. John Holdsworth: gemfish, striped marlin and yellowfin tuna. Kirstie Knowles: sand flounder and rock lobster. Department of Conservation: kina and skate. Quentin Bennett: mako shark. Scott Macindoe: garfish. Jim Mikoz: yellow-eyed mullet. Forest & Bird: arrow squid, dark ghost shark, orange roughy, smooth oreo, packhorse lobster, paddle crabs, stargazer and white warehou.
    [Show full text]
  • Targeted Review of Biological and Ecological Information from Fisheries Research in the South East Marine Region
    TARGETED REVIEW OF BIOLOGICAL AND ECOLOGICAL INFORMATION FROM FISHERIES RESEARCH IN THE SOUTH EAST MARINE REGION FINAL REPORT B. D. Bruce, R. Bradford, R. Daley, M. Green and K. Phillips December 2002 Client: National Oceans Office Targeted review of biological and ecological information from fisheries research in the South East Marine Region Final Report B. D. Bruce, R. Bradford, R. Daley M. Green and K. Phillips* CSIRO Marine Research, Hobart * National Oceans Office December 2002 2 Table of Contents: Table of Contents:...................................................................................................................................3 Introduction.............................................................................................................................................5 Objective of review.............................................................................................................................5 Structure of review..............................................................................................................................5 Format.................................................................................................................................................6 General ecological/biological issues and uncertainties for the South East Marine Region ....................9 Specific fishery and key species accounts ............................................................................................10 South East Fishery (SEF) including the South East Trawl
    [Show full text]