Article Erosion Induced Heterogeneity of Soil Organic Matter in Catenae from the Baltic Sea Catchment Gerald Jandl 1,*, Christel Baum 1 , Goswin Heckrath 2, Mogens H. Greve 2, Arno Kanal 3, Ülo Mander 3, Barbara Maliszewska-Kordybach 4, Jacek Niedzwiecki 4 , Kai-Uwe Eckhardt 1 and Peter Leinweber 1 1 Faculty of Agricultural and Environmental Sciences, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany;
[email protected] (C.B.);
[email protected] (K.-U.E.);
[email protected] (P.L.) 2 Department of Agroecology and Environment, Aarhus University, Blichers Allé 20, Postboks 50, 8830 Tjele, Denmark;
[email protected] (G.H.);
[email protected] (M.H.G.) 3 Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise St. 46, 51014 Tartu, Estonia;
[email protected] (A.K.);
[email protected] (Ü.M.) 4 Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland;
[email protected] (B.M.-K.);
[email protected] (J.N.) * Correspondence:
[email protected] Received: 29 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Soil organic matter (SOM) is unevenly distributed in arable fields in undulated landscapes, but the chemical composition resulting from their turnover, transport and deposition processes is insufficiently known. Therefore, we aimed at disclosing the molecular-chemical composition of SOM in four different catenae at shoulderslope, backslope and footslope positions in arable fields in the Baltic Sea catchment, Europe. The backslope positions always had the lowest organic C-contents (Corg) 1 2 (1.6 ::: 11.8 g kg− ) and C-stocks (3.8 ::: 8.5 kg m− ) compared to the shoulderslopes and footslopes · 1 2· (1.7 ::: 17.7 g Corg kg , 5.4 ::: 15 kg Corg m ).