Topic 2 WRB MINERAL SOILS CONDITIONED by (SUB-) HUMID

Total Page:16

File Type:pdf, Size:1020Kb

Topic 2 WRB MINERAL SOILS CONDITIONED by (SUB-) HUMID TopicTopic 22 WRBWRB MINERALMINERAL SOILSSOILS CONDITIONEDCONDITIONED BYBY (SUB(SUB--)) HUMIDHUMID CLIMATECLIMATE AlbeluvisolsAlbeluvisols,, LuvisolsLuvisols andand UmbrisolsUmbrisols SoilSoil FormingForming FactorsFactors z Significant period (season) when rainfall exceeds evapo-transpiration: Excess water for redistribution. z History of glaciation and periglacial conditions. z Natural vegetation is woodland (boreal and temperate). z Three major types of Landform: - Pleistocene sedimentary lowlands: Glaciofluvial outwash; Glacial sands and Gravels: glacial till; glacio- lacustrine deposits; wind-blown silt (loess|) & sand. - Uplifted & dissected Pre-Pleistocene sedimentary ‘Cuestas’: Limestones; Sandstones & Mudstones, often with thin loess cover. - Uplifted and dissected Caledonian & Hercynian Massifs: Folded sedimentary, metamorphic and igneous rocks. CLIMATECLIMATE TheThe zonalzonal conceptconcept Boreal Forset Long-grass Steppe Tropical Rainforest Cool; P > Et Warm; P < Et Hot; P > Et Strong leaching of Weak upward flux of Leaching of mobile ions; mobile ions; mobile ions (Ca & Na); Strong mineral weathering (Fe Acidification; Salinization; & Al oxides); Low biological activity Strong biological activity; Strong biological activity; Deep rooting & & incorporation of OM Rapid OM cycling (low OC) incorporation of OM Transport of weathered products, Si, etc. ClimaticClimatic CharacteristicsCharacteristics Spring Temperature Recharge 0-50 50 – 250 250 – 500 500 1000 1000 – 2000 2000 - 3000 MainMain soilsoil formingforming processesprocesses z Eluviation / leaching. z Argilluviation (clay translocation). z Podzolization. z Temporary / seasonal saturation and (pseudo-) gleying, particularly of upper soil horizons. (‘Perched’ water tables). Associated with slowly permeable and impermeable parent materials. ‘stagnic properties’ PARENTPARENT MATERIALMATERIAL ImpactsImpacts onon soilsoil formationformation A A A B Some leaching B Leaching B Rapid leaching Perched water Clay translocation Podzolisation Gleying (maybe!) C C C Clay Loam Sand AlbeluvisolsAlbeluvisols:: DiagnosticDiagnostic FeaturesFeatures z An Argic horizon with an irregular upper boundary starting within 1m of the soil surface. z Albeluvic tonguing. Albeluvic tongues Argic horizon AlbeluvisolsAlbeluvisols:: CharacteristicsCharacteristics Under woodland, usually thin & dark with raw A humus (but still Ochric). Where thicker can be Umbric or even Histic. When cultivated A & E horizons mixed to form a paler thick Ochric horizon. Low in bases and naturally acid unless altered by E management. Often gleyed with Stagnic features: a grey matrix with iron-rich segregations. Where sandy, the horizon is uniformly grey – all iron translocatedIn some cases, laterally at the orbase vertically of the E out or oftop the of layer.the Bt, iron segregation can become so concentrated Significantlythat a Ferric horizonmore clay is formed.than overlying horizons. Bt Can be acid (Alic or Alumic) or base-rich (Endoeutric or Haplic) and is often Fragic in some part. C Usually Glacial till or glacio-fluvial terrace material (often over lain by outwash sand) or loess. AlbeluvisolsAlbeluvisols:: GenesisGenesis z Elements of: argilluviation, periglacial freeze-thaw cycles, eluviation and seasonal saturation under acid and often cold conditions (low biological activity). z Albeluvic tongues: Usually the result of periglacial freeze-thaw: Ice-wedge casts. Some may be the result of tree roots exploiting natural cracks in the Argic horizon. z Most European Albeluvisols are ‘fossil’ soils. AlbeluvisolsAlbeluvisols:: ManagementManagement && useuse z Agricultural suitability limited by acidity and low nutrient status (in upper horizons), seasonal wetness and, most of all, short growing season. z In the northern taiga zone: virtually all forest z In the southern taiga zone: Mixed agriculture and forest but most agriculture is for pasture or hay. z Arable cropping increases to the south and west and in western Europe, where most Albeluvisols are fossil soils (the climate has changed!), cultivated Albeluvisols much more common. Liming, application of fertilizers and careful timing of cultivations on stagnic soils is required. CultivatedCultivated AlbeluvisolsAlbeluvisols From Denmark And the UK Ap Ap Incipient Ferric? spodic? LuvisolsLuvisols:: DiagnosticDiagnostic featuresfeatures z An argic horizon with a CEC* > 24cmol(+) kg-1 clay. Starts within 1m depth OR, if overlain by sandy material, within 2m depth. z No Albeluvic tonguing.Argic horizon z No abrupt textural change if stagnic features occur. z No spodic horizon. z No Alic properties LuvisolsLuvisols:: CharacteristicsCharacteristics Brown to dark brown Ochric surface horizon A (Under some woodland, thin & dark raw humus may be present (but still Ochric).. Paler brown, usually weakly structured and E decalcified (if parent material is calcareous). May have stagnic features if Bt is slowly permeable. Significantly more clay than overlying horizons and in extreme cases there is an abrupt textural change Bt (abruptic). Stable blocky structures. May have less than 50% base saturation in the upper parts (Dystric). A wide variety of unconsolidated or weakly C consolidated Pleistocene & soft pre-Pleistocene materials. Mainly clays, silts and loams. LuvisolsLuvisols underunder woodlandwoodland inin thethe UKUK Ah LuvisolsLuvisols:: GenesisGenesis z Argilluviation. 1. Mobilization of clay in the surface. Depends on: Charge characteristics of the clay; Ionic strength of soil solution; Composition of ions in the exchange complex. 2. Vertical transport in colloidal suspension via: Downward percolating water moving through coarse pores (> c. 20µm wide.) 3. Immobilization of transported clay in the horizon of accumulation: Flocculation caused by an increase in electrolyte or divalent cation concentration. Filtration by finer pores in drier soil layers. z May also be elements of: Seasonal saturation in slowly permeable materials (Stagnic). Seasonal saturation of lower horizons by rising groundwater in depressional areas (Gleyic). ClayClay transporttransport inin aa LuvisolLuvisol Calcaric Cambisol Haplic Luvisol Same substrate LuvisolsLuvisols:: ManagementManagement && useuse z Normally fertile soils suitable for a wide range of uses. z Those with more extreme range of properties (Leptic, Vitric, Albic, Dystric) may be less fertile. z BUT, because of clay mobilization in their topsoils they are susceptible to: Structural degradation: slaking and compaction. Erosion. Transfer of particulate clay and associated (agro-)chemicals to surface waters. z Stagnic & Gleyic soils usually require artificial drainage and careful timing of cultivations. UmbrisolsUmbrisols:: DiagnosticDiagnostic featuresfeatures Umbric horizon z An Umbric topsoil horizon. z No other diagnostic horizons except: An Anthropedogenic horizon less than 50cm thick. An Albic horizon. A Cambic horizon. UmbrisolsUmbrisols:: CharacteristicsCharacteristics Thick, dark, acid organic-rich surface horizon rich in organic matter (Umbric horizon). ‘Acid or oligotrophic mull’, ‘moder’, ‘raw humus’, ‘mor’. Ah May be modified by man to increase its fertility by liming and fertilisation (Anthric). (B) Usually weakly developed (Cambic) or incipient podzolic horizon not sufficiently developed to qualify as Spodic. Where stagnic properties are present may be more developed. C Mainly the (glacial and periglacial) weathering products of siliceous rocks in Caledonian and Hercynian massifs. TypesTypes ofof UmbrisolsUmbrisols HaplicHaplic (Cambic?)Episkeletic / Leptic Stagnic UmbrisolsUmbrisols:: GenesisGenesis z Lack of significant period of soil moisture deficit, cool, wet mainly acid conditions: Typically upland massifs. z Accumulation of acid organic matter because of slow biological turnover under conditions of: acidity; low temperature; surface wetness; a combination of these. z Not sufficiently cold and/or wet for a Histic horizon to develop. z Accumulation of organic matter is more rapid than any associated formation of spodic or argic horizons. UmbrisolsUmbrisols:: ManagementManagement && useuse z Often still under natural or semi-natural vegetation. Montane or boreal forest; short grassland above the tree line. z Where cleared of forest cover (particularly in north & western Europe) short grass ‘moorland’. z Can support ‘improved’ grazing pasture if limed and fertilised but usually too wet and/or cold for arable crops. RelationshipRelationship betweenbetween AlbeluvisolsAlbeluvisols,, LuvisolsLuvisols && UmbisolsUmbisols Luvisols worldwide Albeluvisols worldwide Umbrisols world-wide UMBRISOLS LS O IS UV moisture deficit L ALBELUVISOLS Increasing wetness and lack of and wetness Increasing Increasing cold winters but not wet UmbrisolsUmbrisols andand rainfallrainfall.
Recommended publications
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Correlation Between the Polish Soil Classification (2011) and International Soil Classification System World Reference Base for Soil Resources (2015)
    DE DE GRUYTER 88 OPEN CEZARY KABA£A, MARCIN ŒWITONIAK, PRZEMYS£AW CHARZYÑSKI SOIL SCIENCE ANNUAL DOI: 10.1515/ssa-2016-0012 Vol. 67 No. 2/2016: 88–100 CEZARY KABA£A1*, MARCIN ŒWITONIAK2, PRZEMYS£AW CHARZYÑSKI2 1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection Grunwaldzka 53, 50-357 Wroc³aw, Poland 2 Nicolaus Copernicus University, Department of Soil Science and Landscape Management Lwowska 1, 87-100 Toruñ, Poland Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015) Abstract: The recent editions of the Polish Soil Classification (PSC) have supplied the correlation table with the World Reference Base for Soil Resources (WRB), which is the international soil classification most commonly used by Polish pedologists. However, the latest WRB edition (IUSS Working Group WRB 2015) has introduced significant changes and many of the former correlations became outdated. The current paper presents the closest equivalents of the soil orders, types and subtypes of the recent edition of the PSC (2011) and WRB (IUSS Working Group WRB 2015). The proposals can be used for general correlation of soil units on maps and in databases, and may support Polish soil scientists to establish the most appropriate equivalents for soils under study, as well as make PSC more available for an international society. Keywords: Polish Soils Classification, WRB, equivalents, reference soil groups, soil types INTRODUCTION quantitative concept. Presently, the Soil Taxonomy is used in over 40 countries (Krasilnikov 2002) as a Pedology appeared in the second half of the 19th primary system for naming the soils.
    [Show full text]
  • ANTHROSOLS Profound Changes in Soil Properties (From the Greek, Meaning Soil)
    JRC Soils Atlas 24/6/05 11:32 am Page 28 The soil of Europe The major soil types of Europe Soil with subsurface accumulation of low activity clay Acid soil with a bleached horizon penetrating a clay ACRISOLS minerals and low base saturation (from the Latin, acris, ALBELUVISOLS accumulation horizon (from the Latin, albus, meaning meaning very acid). white and eluere, meaning to wash out). An Acrisol is a highly weathered soil occurring in warm temperate regions and the wetter parts Albeluvisols have an accumulation of clay in the subsoil with an irregular or broken upper of the tropics and subtropics. Acrisols have poor chemical properties, low levels of plant boundary and deep penetrations or ‘tonguing’ of bleached soil material into the illuviation nutrients, high levels of aluminium and high susceptibility to erosion. These conditions are horizon. The typical “albeluvic tongues” are generally the result of freeze-thaw processes in strong limitations for agricultural use. Acrisols are similar to the Red-Yellow Podzolic soil of periglacial conditions and often show a polygonal network in horizontal cuts. Albeluvisols occur Indonesia), Red and Yellow Earths and are related to several subgroups of Alfisols and Ultisols mainly in the moist and cool temperate regions. Also known as Podzoluvisols (FAO), Ortho- (Soil Taxonomy). podzolic soil (Russia) and several suborders of the Alfisols (Soil Taxonomy). Left: Sheet and rill erosion on Left: Albeluvisols develop Acrisols; mostly under forest vegetation; Below: a natural Acrisol profile Below: Albeluvic tongues are exposed by deep gully erosion; clearly visible penetrating the The map shows the location of bleached illuvial horizon; The areas in Europe where Acrisols map shows the location of are the dominant soil type.
    [Show full text]
  • 19Th World Congress of Soil Science Working Group 1.1 the WRB
    19th World Congress of Soil Science Working Group 1.1 The WRB evolution Soil Solutions for a Changing World, Brisbane, Australia 1 – 6 August 2010 Table of Contents Page Table of Contents ii 1 Diversity and classification problems of sandy soils in subboreal 1 zone (Central Europe, Poland) 2 Finding a way through the maze – WRB classification with 5 descriptive soil data 3 Guidelines for constructing small-scale map legends using the 9 World Reference Base for Soil Resources 4 On the origin of Planosols – the process of ferrolysis revisited 13 5 Orphans in soil classification: Musing on Palaeosols in the 17 World Reference Base system 6 Pedometrics application for correlation of Hungarian soil types 21 with WRB 7 The classification of Leptosols in the World Reference Base for 25 Soil Resources 8 The World Reference Base for Soils (WRB) and Soil 28 Taxonomy: an initial appraisal of their application to the soils of the Northern Rivers of New South Wales 9 A short guide to the soils of South Africa, their distribution and 32 correlation with World Reference Base soil groups ii Diversity and classification problems of sandy soils in subboreal zone (Central Europe, Poland) Michał Jankowski Faculty of Biology and Earth Sciences, Nicolaus Copernicus University, Toruń, Poland, Email [email protected] Abstract The aim of this study was to present some examples of sandy soils and to discuss their position in soil systematics. 8 profiles represent: 4 soils widely distributed in postglacial landscapes of Poland (Central Europe), typical for different geomorphological conditions and vegetation habitats (according to regional soil classification: Arenosol, Podzolic soil, Rusty soil and Mucky soil) and 4 soils having unusual features (Gleyic Podzol and Rusty soil developed in a CaCO 3-rich substratum and two profiles of red-colored Ochre soils).
    [Show full text]
  • THE ABC SOIL TYPES: a Review PODZOLUVISOLS, ALBELUVISOLS OR RETISOLS? S
    55 THE ABC SOIL TYPES: A review PODZOLUVISOLS, ALBELUVISOLS OR RETISOLS? S. Dondeyne1 J.A. Deckers2 ¹ Department of Geography, Ghent University, Gent, Belgium ² Department of Earth and Environmental Sciences, University of Leuven, Leuven, Belgium Corresponding author S. Dondeyne, [email protected] abstract At an archaeological excavation site in central Belgium, we found whitish soil material interspersing a clay illuviation hori- zon under a Roman road. Starting from this case, we will illustrate how insights into soil formation and soil geography are relevant for understanding landscape evolution and archaeology. We do this by focusing on the ‘Abc’ soil types, which are silt-loam soils that are well-drained and have a mottled and discontinuous clay illuviation horizon. In Belgium, these soils are, almost exclusively, found under ancient forests. To explain their formation, two hypotheses have been proposed. A first assumes that chemical weathering leads to the degradation of the clay illuviation horizon, a process enhanced by the acidifying effect of forest vegetation. A second hypothesis explains their morphology as relict features from periglacial phenomena. We further review how views on their formation were reflected in Soil Taxonomy Glossudalfs( ), the FAO legend of the soil map of the world (Podzoluvisols) and in the World Reference Base for soil resources (Albeluvisols and Retisols). If we accept the hypothesis that the morphology of the Abc soil types has to be attributed to periglacial pheno- mena, Abc soil types must have been more widespread before deforestation. Agricultural activities promoted the homog- enisation of the subsoil and the fading of their morphologic characteristics. A Roman road would have prevented such a homogenisation process.
    [Show full text]
  • Lithological Discontinuity in Glossic Planosols (Albeluvisols) of Lower Silesia (SW Poland)
    DE DE GRUYTER 180 OPEN EL¯BIETA MUSZTYFAGA, CEZARY KABA£A SOIL SCIENCE ANNUAL DOI: 10.1515/ssa-2015-0035 Vol. 66 No. 4/2015: 180–190 EL¯BIETA MUSZTYFAGA*, CEZARY KABA£A Wroc³aw University of Environmental and Life Sciences, Institute of Soil Sciences and Environmental Protection Grunwaldzka 53 St., 50-375 Wroc³aw, Poland Lithological discontinuity in Glossic Planosols (Albeluvisols) of Lower Silesia (SW Poland) Abstract: The paper focuses on Glossic Planosols (formerly Albeluvisols) with sandy topsoil widely represented in the north- eastern part of Lower Silesia (SW Poland), in the range of tills from the Odra and Warta glaciations (Riss glaciation). The aim of the study was to characterize the texture of these soils in the context of the origin of parent materials and present-day pedogenic processes. Both the sedimentological and granulometric indexes, unbalances clay (and silt) fraction, and ventifact pavement at the contact of underlying loam and topsoil sandy layer confirm, that the textural differentiation of the topsoil and subsoil horizons has not resulted from the pedogenic processes, but primarily from the lithological discontinuity of glacial and post-glacial parent materials. Particle-size distribution and granulometric indexes of albeluvic tongues in the glossic horizon also confirm that the tongues has not been formed by eluviation of the fine fractions from the loamy material, but primarily by filling the initial thin crack with the sandy material. The coarser-textured tongues foster a deep infiltration and stagnation of water, and the development of reductic conditions allows further widening and deepening of the albeluvic tongues. Keywords: Glossic Planosols, Albeluvisols, textural differentiation, lithological discontinuity INTRODUCTION “loam sandification (spiaszczenie gliny)” that preceded the concept of clay illuviation (“lessivage”), Soil texture is a fundamental parameter determining but involved differentiation not only in clay but also soil properties and land use.
    [Show full text]
  • Anthrosols (At)
    ANTHROSOLS (AT) The Reference Soil Group of the Anthrosols comprises soils that were buried or profoundly modified through human activities such as addition of organic materials or household wastes, irrigation or culti- vation. The group includes soils otherwise known as 'Plaggen soils', 'Paddy soils', 'Oasis soils' and 'Ter- ra Preta do Indio'. Definition of Anthrosols Soils having 1 a hortic, irragric, plaggic or terric horizon 50 cm or more thick; or 2 an anthraquic horizon and an underlying hydragric with a combined thickness of 50 cm or more. Common soil units: 1 Units characterizing the surface horizon: Hydragric, Irragric, Terric, Plaggic and Hortic. 2 Units characterizing buried horizon(s) or soil: Gleyic, Spodic, Ferralic, Luvic, Arenic, Regic, Stagnic. Summary description of Anthrosols Connotation: soils with prominent characteristics that result from human activities; from Gr. anthropos, man. Parent material: virtually any soil material, modified by Man through cultivation or addition of mate- rial. Environment: Plaggic Anthrosols are most common in north-west Europe; Hydragric Anthrosols in Southeast and East Asia, and Irragric Anthrosols in the Middle East. Profile development: influence of Man is normally restricted to the surface horizon(s); the horizon dif- ferentiation of a buried soil can still be intact at some depth. Use: European Anthrosols were traditionally grown to winter rye, oats, and barley but are now also planted to forage crops, potatoes and horticultural crops; in places they are used for tree nurseries and pasture. Irragric Anthrosols occur in irrigation areas where they are under cash crops and/or food crops. Hydragric Anthrosols are associated with paddy rice cultivation whereas Hortic Anthrosols are (main- ly) planted to vegetables for home consumption.
    [Show full text]
  • Quantification of Soil Volumes in the Eg&Bt-Horizon of an Albeluvisol
    Quantification of soil volumes in the Eg&Bt-horizon of an Albeluvisol using image analysis David Montagne, Isabelle Cousin, Lydie Le Forestier, Joël Daroussin, Sophie Cornu To cite this version: David Montagne, Isabelle Cousin, Lydie Le Forestier, Joël Daroussin, Sophie Cornu. Quantification of soil volumes in the Eg&Bt-horizon of an Albeluvisol using image analysis. Canadian Journal of Soil Science, Agricultural Institute of Canada, 2007, 87, pp.51-59. hal-00103973 HAL Id: hal-00103973 https://hal-insu.archives-ouvertes.fr/hal-00103973 Submitted on 5 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quantification of soil volumes in the Eg&Bt-horizon of an Albeluvisol using image analysis David Montagnea*, Isabelle Cousina, Lydie Le Forestierb, Joël Daroussina, Sophie Cornua a Unité de recherche en Science du Sol, INRA Orléans, avenue de la Pomme de Pin, BP 20619, 45166 Olivet cedex, France b ISTO (UMR 6113), Polytech’Orléans, 8 rue Léonard de Vinci, 45072 Orléans cedex 2, France * Corresponding author Phone : +33 2 38 41 78 45 Fax : +33 2 38 41 78 69 E-mail : [email protected] Keywords: pedogenesis, drainage, image analysis, Albeluvisol, Representative Elementary Volume (REV).
    [Show full text]
  • Biochar As a Soil Amendment for the Immobilization of Copper, Zinc, Cadmium and Lead on Former Sewage Fields
    Biochar as a soil amendment for the immobilization of copper, zinc, cadmium and lead on former sewage fields vorgelegt von Dipl.-Ing. Anne Wagner geb. in New York von der Fakultät VI – Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Gerd Wessolek Gutachter: Prof. Dr. Martin Kaupenjohann Gutachter: PD Dr. Jan Siemens Gutachter: Prof. Dr. Diedrich Steffens Tag der wissenschaftlichen Aussprache: 22. April 2014 Berlin 2014 Ein jüdisches Sprichwort besagt: “wenn Du Gott zum Lachen bringen willst, mache einen Plan...” Im Laufe meiner Dissertation habe ich somit Gott, wenn es ihn gibt, ausgiebig zum Lachen gebracht... Table of contents List of Figures..........................................................................................................................IV List of Tables............................................................................................................................VI Acknowledgements............................................................................................................... VII Abstract...................................................................................................................................V. III Kurzfassung............................................................................................................................. X 1 General Introduction................................................................................................................1
    [Show full text]
  • On the Origin of Planosols – the Process of Ferrolysis Revisited
    On the origin of Planosols – the process of ferrolysis revisited Eric Van Ranst A, Alemayehu Regassa Tolossa B, Mathijs Dumon A, Jean-Thomas Cornelis C, Jozef Deckers D A Department of Geology and Soil Science, Ghent University, Belgium, E-mail: [email protected] B Department of Soil Science, Jimma University, Ethiopia C Soil Science Unit, Université Catholique de Louvain, Belgium D Department of Land Management, K.U.Leuven, Belgium Abstract Planosols have been recognized as a Major Soil Group right from the beginning in the legend of the FAO Soil Map of the World. Also in WRB system it maintained that position at Reference Soil Group level on the account that a major pedogenetic process, ferrolysis, is underlaying the severe stagnic properties that characterize this group. With the recent introduction of Stagnosols in WRB it appears that a serious overlap has been introduced at Reference Soil Group level. This paper aims to throw new light on the genesis of Planosols, drawing from new soil surveys conducted in the south-western Ethiopian highlands. The conclusion is that it is highly unlikely that ‘ferrolysis’ can be called in to explain the genesis of Planosols in the Ethiopian highlands. As Ethiopia is one of the mainstays of Planosols, it is suggested that WRB rethinks its strategy on soils with stagnic properties as there is room for rationalization. Key Words Planosols, Stagnic properties, Ferrolysis, Stagnosols. Introduction International soil correlation of Planosols The Reference Soil Group of Planosols holds soils with surface horizons that are bleached and light-coloured or have a stagnic colour pattern, show signs of periodic water stagnation and abruptly overly a dense, slowly permeable subsoil with significantly more clay than the surface horizons (Driessen et al .
    [Show full text]
  • Erosion Induced Heterogeneity of Soil Organic Matter in Catenae from the Baltic Sea Catchment
    Article Erosion Induced Heterogeneity of Soil Organic Matter in Catenae from the Baltic Sea Catchment Gerald Jandl 1,*, Christel Baum 1 , Goswin Heckrath 2, Mogens H. Greve 2, Arno Kanal 3, Ülo Mander 3, Barbara Maliszewska-Kordybach 4, Jacek Niedzwiecki 4 , Kai-Uwe Eckhardt 1 and Peter Leinweber 1 1 Faculty of Agricultural and Environmental Sciences, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany; [email protected] (C.B.); [email protected] (K.-U.E.); [email protected] (P.L.) 2 Department of Agroecology and Environment, Aarhus University, Blichers Allé 20, Postboks 50, 8830 Tjele, Denmark; [email protected] (G.H.); [email protected] (M.H.G.) 3 Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise St. 46, 51014 Tartu, Estonia; [email protected] (A.K.); [email protected] (Ü.M.) 4 Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland; [email protected] (B.M.-K.); [email protected] (J.N.) * Correspondence: [email protected] Received: 29 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Soil organic matter (SOM) is unevenly distributed in arable fields in undulated landscapes, but the chemical composition resulting from their turnover, transport and deposition processes is insufficiently known. Therefore, we aimed at disclosing the molecular-chemical composition of SOM in four different catenae at shoulderslope, backslope and footslope positions in arable fields in the Baltic Sea catchment, Europe. The backslope positions always had the lowest organic C-contents (Corg) 1 2 (1.6 ::: 11.8 g kg− ) and C-stocks (3.8 ::: 8.5 kg m− ) compared to the shoulderslopes and footslopes · 1 2· (1.7 ::: 17.7 g Corg kg , 5.4 ::: 15 kg Corg m ).
    [Show full text]
  • Rates of Soil-Forming Processes in Three Main Models of Pedogenesis
    Revista Mexicana de Ciencias Geológicas,Rates of soil-forming v. 24, núm. processes2, 2007, p. in 283-292 three main models of pedogenesis 283 Rates of soil-forming processes in three main models of pedogenesis Alexander L. Alexandrovskiy Institute of Geography, Russian Academy of Sciences, Staromonetny 29, Moscow 119017, Russia. [email protected] ABSTRACT Rates of soil-forming processes were evaluated for the three major models of pedogenesis: (1) normal “top-down” soil development (pedogenesis transforms the parent material under a geomorphically stable surface), (2) soil development accompanied by pedoturbation (turbational model), and (3) soil development accompanied by or alternating with sediment deposition on the soil surface (sedimentational model). According to the normal model, the rates of pedogenic processes exponentially decrease with time, so that in 2–3 ka after the beginning of pedogenesis, temporal changes in the soil properties become negligibly small, which is typical of soils in the steady state. Under humid climate conditions, the rates of many processes (accumulation and mineralization of humus, leaching of bases, migration of sesquioxides, textural differentiation, and so forth) are much higher than under arid climate conditions. For example, the rate of textural differentiation in soils of humid climates is one to two orders of magnitude higher than that in soils of arid climates, and the rate of humus accumulation and rejuvenation is several times higher. The rate of the zoogenic turbation of soil material with the input of fi ne earth onto the soil surface and gradual burial of archaeological artifacts into the soil is maximal in Chernozems, where it is two times higher than in Kastanozems and gray forest soils (Humic Luvisols) and fi ve times higher than that in Albeluvisols and Podzols.
    [Show full text]