Aspergillus Niger Research Timothy C

Total Page:16

File Type:pdf, Size:1020Kb

Aspergillus Niger Research Timothy C Cairns et al. Fungal Biol Biotechnol (2018) 5:13 https://doi.org/10.1186/s40694-018-0054-5 Fungal Biology and Biotechnology REVIEW Open Access How a fungus shapes biotechnology: 100 years of Aspergillus niger research Timothy C. Cairns*, Corrado Nai* and Vera Meyer* Abstract In 1917, a food chemist named James Currie made a promising discovery: any strain of the flamentous mould Aspergillus niger would produce high concentrations of citric acid when grown in sugar medium. This tricarboxylic acid, which we now know is an intermediate of the Krebs cycle, had previously been extracted from citrus fruits for applications in food and beverage production. Two years after Currie’s discovery, industrial-level production using A. niger began, the biochemical fermentation industry started to fourish, and industrial biotechnology was born. A century later, citric acid production using this mould is a multi-billion dollar industry, with A. niger additionally produc- ing a diverse range of proteins, enzymes and secondary metabolites. In this review, we assess main developments in the feld of A. niger biology over the last 100 years and highlight scientifc breakthroughs and discoveries which were infuential for both basic and applied fungal research in and outside the A. niger community. We give special focus to two developments of the last decade: systems biology and genome editing. We also summarize the current interna- tional A. niger research community, and end by speculating on the future of fundamental research on this fascinating fungus and its exploitation in industrial biotechnology. Keywords: Aspergillus niger, Biotechnology, Industrial biology, Systems biology, Genome editing, Citric acid Introduction €4.7 billion, which was expected to reach up to €10 bil- For millennia, humanity has practiced rudimental forms lion within the next decade [2]. In this celebratory his- of biotechnology: by fermenting starch and sugars pre- torical overview, we outline some of the crucial advances sent in grains and fruits, ancient civilizations were able for the flamentous mould Aspergillus niger since the to produce bread, beer, wine, and other alcoholic bever- very frst biotechnological experiments using this fungus ages. Prior to the late nineteenth and early twentieth cen- 100 years ago. tury, these processes were conducted without knowledge of the underlying biological events. Now, brewery and 100 years ago: industrial biotech is born wine making is a well-understood, controlled industrial In contrast to what most people might think, citric acid process. Similarly, in just a century, industrial biotechnol- is not—or not anymore—isolated from citrus fruits, but ogy has changed dramatically and fourished, from initial is industrially produced by the flamentous fungus A. proof-of-principle experimentation in Erlenmeyer fasks, niger. Te process was pioneered by James Currie, a food to a multibillion dollar industry producing megatons of chemist, who 100 years ago published a study describ- useful molecules [1]. Fungal biotechnology is undoubt- ing the superior properties of A. niger for the industrial edly a major contributor and driver of this success. As production of the acid [3]. In particular, Currie showed just one example, the estimated market volume for plant- the necessary growth medium for citric acid biosyn- degrading enzymes from flamentous fungi in 2016 was thesis, and the ability of the fungus to grow at low pH (2.5–3.5), while still being able to produce high amounts *Correspondence: t.cairns@tu‑berlin.de; corrado.nai@tu‑berlin.de; vera. of the metabolite. Moreover, this work demonstrated meyer@tu‑berlin.de the direct correlation between amount of substrate in Department of Applied and Molecular Microbiology, Institute the medium and amount of product, laying the basis for of Biotechnology, Technische Universität Berlin, Gustav‑Meyer‑Allee 25, 13355 Berlin, Germany modern-day industrial fermentation of citric acid [3]. In © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Cairns et al. Fungal Biol Biotechnol (2018) 5:13 Page 2 of 14 contrast to other species of fungi that had been reported regarding the history of the A. niger research feld can, to produce citric acid by 1917, every single strain of A. in general terms, be deciphered. We conducted a survey niger that Currie tested could efciently produce this of the A. niger literature since Currie’s seminal study by molecule when grown in sugar solutions. Two years later, interrogating the PubMed database [6] for any publica- the American company Pfzer made a pilot plant for bio- tion containing ‘Aspergillus niger’ in the title. Te result- chemical production of citric acid, and by the mid 1920s, ing articles (> 3000, see Additional fle 1: Table S1) were production using A. niger fermentation far outweighed divided into fve 20-year periods based on their publi- extraction from citrus fruits [4]. cation date, and the 20 most common words from the Te citric acid cycle was comprehensively determined available titles during each time period were visualized over the next several decades, resulting in the award of as word clouds (Fig. 1). Although querying the PubMed the Nobel Prize to Hans Krebs and Fritz Lipmann in database for ‘Aspergillus niger’ in abstract and keywords 1953. Te frst and fnal reaction in the cycle involves the resulted in more returned manuscripts (> 8700 hits), we formation of citrate from oxaloacetate, acetyl-CoA, and decided to limit our word-cloud analysis specifcally to water, by a citrate synthase, ultimately generating chemi- titles. We applied this restriction as searching among cal energy in the form of adenosine triphosphate (ATP). manuscript abstracts returned a majority of hits where Te objective of industrial microbiologists, including researchers used A. niger in simple growth assays to vali- James Currie, was to exploit this cycle, and indeed many date efcacy of putative antifungals. While of interest, other metabolic pathways, to ferment useful molecules. these research eforts (which were extremely common Although there are variations in fermentation tech- from 1977 onwards) are not, specifcally, interested in A. niques, in general, industrial production of citric acid niger biology per se. requires aerobic, submerged growth of A. niger in a Our analysis of 100 years of A. niger publications indi- sugar solution, which is usually derived from inexpensive cated, unsurprisingly, that ‘citric acid’ and ‘fermentation’ sources, such as molasses, corn steep liquor, or hydro- were amongst the most common returned words in titles lysed corn starch, amongst others. After fermentation, from every period (Fig. 1). Clearly, Currie’s discovery of A. niger is physically removed, usually by fltration, and conditions for maximizing citric acid production [3] was citric acid is isolated by precipitation of the fermentation indeed a biotechnological revolution, and one that would mix with calcium hydroxide (lime) to generate calcium constitute a major focus of research over the next cen- citrate salt. Subsequent treatment with sulphuric acid tury. Indeed, A. niger research has rapidly grown over the yields the citric acid product. past 40 years (Fig. 2). Although by no means exhaustive, Te widespread applications of citric acid are shown by distinct historical trends become apparent from our anal- current fgures regarding this metabolite: in 2007, world- ysis (Fig. 1). wide production was estimated at 1.6 million tons, with an estimated value of $2.6 billion in 2014 and predicted The foundations of A. niger research to rise to $3.6 billion by 2020 [1, 5]. As a weak acid, it From the period 1937–1956, A. niger researchers were can be used as an antioxidant, preservative, acidulant, predominantly concerned with the impact of micro/ pH-regulator, or favour in food and beverages, as well as macro nutrients in cultivation media and growth param- comparable applications in the pharmaceutical and cos- eters for optimized citric acid fermentation (Fig. 1, [7, metics industries. Citric acid is currently predominantly 8]). Most studies specifcally utilized submerged culture, produced in China, which accounts for approximately which obviously refects the need to control growth, 60% of global production [1]. However, A. niger industrial morphology, and, ultimately, citric acid production dur- applications are not just limited to the production of cit- ing fermentation (Additional fle 1: Table S1 and [9]). ric acid; as a prolifc secretor, numerous industrially rel- After the award of Hermann Muller’s Nobel Prize in evant enzymes and other molecules are produced by this 1946 for work on mutations via X-ray irradiation, the fungus. Below, we summarize some of the key develop- late 1940s and early 1950s saw the frst mutagenesis stud- ments in the feld over the last century. ies in biological sciences deployed by the A. niger com- munity in order to generate strains with improved citric A historical snapshot of A. niger research acid yields [10]. Te number of UV, X-ray, and chemical Te fundamental and applied scientifc discoveries using mutagenesis eforts increased from 1957 to 1976, with A. niger over the last 100 years are extremely diverse. As most focusing on enhancing citric acid production (e.g. Currie wrote in 1917: ‘Few concise statements can be [11] and Fig. 1). made concerning the metabolism of an organism capa- Notably, the period from 1957 to 1976 saw a paradigm ble of producing such a variety of chemical transforma- shift amongst the A. niger biotechnological research tions as Aspergillus niger’ [3]. Nevertheless, some trends community, with the widespread realization that this Cairns et al.
Recommended publications
  • FINAL RISK ASSESSMENT for Aspergillus Niger (February 1997)
    ATTACHMENT I--FINAL RISK ASSESSMENT FOR Aspergillus niger (February 1997) I. INTRODUCTION Aspergillus niger is a member of the genus Aspergillus which includes a set of fungi that are generally considered asexual, although perfect forms (forms that reproduce sexually) have been found. Aspergilli are ubiquitous in nature. They are geographically widely distributed, and have been observed in a broad range of habitats because they can colonize a wide variety of substrates. A. niger is commonly found as a saprophyte growing on dead leaves, stored grain, compost piles, and other decaying vegetation. The spores are widespread, and are often associated with organic materials and soil. History of Commercial Use and Products Subject to TSCA Jurisdiction The primary uses of A. niger are for the production of enzymes and organic acids by fermentation. While the foods, for which some of the enzymes may be used in preparation, are not subject to TSCA, these enzymes may have multiple uses, many of which are not regulated except under TSCA. Fermentations to produce these enzymes may be carried out in vessels as large as 100,000 liters (Finkelstein et al., 1989). A. niger is also used to produce organic acids such as citric acid and gluconic acid. The history of safe use for A. niger comes primarily from its use in the food industry for the production of many enzymes such as a-amylase, amyloglucosidase, cellulases, lactase, invertase, pectinases, and acid proteases (Bennett, 1985a; Ward, 1989). In addition, the annual production of citric acid by fermentation is now approximately 350,000 tons, using either A.
    [Show full text]
  • Nomination Background: Stachybotrys Chartarum Strain 2 Mold (Atranone Chemotype) (CASRN: STACHYSTRN2)
    Stachybotrys chartarum (or S. atra or S. alternans) [CAS No. 67892-26-6] Review of Toxicological Literature June 2004 Stachybotrys chartarum (or S. atra or S. alternans) [CAS No. 67892-26-6] Review of Toxicological Literature Prepared for National Toxicology Program (NTP) National Institute of Environmental Health Sciences (NIEHS) National Institutes of Health U.S Department of Health and Human Services Contract No. N01-ES-35515 Project Officer: Scott A. Masten, Ph.D. NTP/NIEHS Research Triangle Park, North Carolina Prepared by Integrated Laboratory Systems, Inc. Research Triangle Park, North Carolina June 2004 Abstract Stachybotrys chartarum is a greenish-black mold in the fungal division Deuteromycota, a catch-all group for fungi for which a sexually reproducing stage is unknown. It produces asexual spores (conidia). The morphology and color of conidia and other structures examined microscopically help distinguish the species from other molds found in indoor air that may contaminate materials in buildings that have suffered water intrusion. S. chartarum may ultimately overgrow other molds that have also produced colonies on wet cellulosic materials such as drywall (gypsum board, wallboard, sheet rock, etc.). Because of the likelihood that it may produce toxic macrocyclic trichothecenes and hemolytic stachylysin (exposure to which may be associated with idiopathic pulmonary hemorrhage [IPH] in infants), S. chartarum exposure is of concern to the members of the general public whose homes and workplaces have been contaminated after water intrusion, to agricultural and textile workers who handle contaminated plant material, and to workers involved in remediation of mold-damaged structures. Dry conidia, hyphae, and other fragments can be mechanically aerosolized as inhalable particulates.
    [Show full text]
  • Studies on Identification of the Food Born Fungal Pathogens and Their
    ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 3 Issue 10 October 2019 Review Article Studies on Identification of the Food Born Fungal Pathogens and their Nadia Jabeen1* and Khuram Shahzad Pathogenic2 Effects on Human Health 1Department of Agriculture, Hazara University, Khyber Pakhtun Khawa (KPK), Pakistan 2Department of Agronomy, Agricultural University Peshawer, Khyber Pakhtun Khawa (KPK), Pakistan *Corresponding Author: Received: Nadia Published:Jabeen, Department of Agriculture, Hazara University, Khyber Pakhtun Khawa (KPK), Pakistan. DOI: September 12, 2019; September 26, 2019 10.31080/ASAG.2019.03.0667 Abstract The present review research was conducted to find out the quality of food available at surrounding food spots in front gate of Hazara University. Samples were taken from different burger shops and few vegetables and dry fruits seller. The fugal pathogens were identified by culturing in the Microbiology lab and studied for characterization on morphological basis and from the literature [1,2]. Aspergillus niger Aspergillus flavus. It was observed that mostly shopkeepers were using expire dated bread, not showing the symptoms but having the pathogens. The Aspergillus niger Aspergillus flavus vegetablesKeywords: were also contaminated with and Pathogen; Human Health; ; Introduction a mycelium (plural, mycelia). Three kinds of reproductive struc- Fungi is included in the plant kingdom, they lack chlorophyll, tures occur in fungi: (1) Sporangia, which are involved in the for- chemo heterotrophs and lack of mobility. Fungal cell contains mation of spores; (2) Gametangia, structures within which gametes membrane bound cell organelles including nuclei, mitochondria, form; and (3) Conidiophores, structures that produce conidia, mul- Golgi apparatus, endoplasmic reticulum and lysosomes and are tinucleate asexual spores.
    [Show full text]
  • Diversity Within Aspergillus Niger Clade and Description of a New Species: Aspergillus Vinaceus Sp
    Journal of Fungi Article Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. nov. Josué J. da Silva 1, Beatriz T. Iamanaka 2, Larissa S. Ferranti 1, Fernanda P. Massi 1, Marta H. Taniwaki 2 , Olivier Puel 3 , Sophie Lorber 3 , Jens C. Frisvad 4 and Maria Helena P. Fungaro 1,* 1 Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; [email protected] (J.J.d.S.); [email protected] (L.S.F.); [email protected] (F.P.M.) 2 Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; [email protected] (B.T.I.); [email protected] (M.H.T.) 3 Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; [email protected] (O.P.); [email protected] (S.L.) 4 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +55-4399-955-4100 Received: 4 November 2020; Accepted: 14 December 2020; Published: 17 December 2020 Abstract: Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes.
    [Show full text]
  • Optimization of Citric Acid Production by Substrate Selection Using Gamma Ray Induced Mutant Strain of Aspergillusniger by Shamima Nasrin, Mejbah Uddin Unsary & Md
    Global Journal of Medical Research: C Microbiology and Pathology Volume 17 Issue 2 Version 1.0 Year 2017 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4618 & Print ISSN: 0975-5888 Optimization of Citric Acid Production by Substrate Selection using Gamma Ray Induced Mutant Strain of Aspergillusniger By Shamima Nasrin, Mejbah Uddin Unsary & Md. Khorshed Alam Jahangir Nagar University Abstract- The worldwide demand for citric acid is increasing with the rising population and industrialization. The growing demand for citric acid and the need for alternative materials as substrates in the recent years have led to the choice of a novel and economically viable substrate, namely jackfruit (outer portion) and molasses for citric acid biosynthesis. Hydrolysis these substrates with 0.05N HCl followed by fermentation using two isolates of Aspergillus niger were investigated for citric acid production under submerged culture condition in a period of 15 days. The products of the microbial metabolism namely residual sugar, total titratable acidity (TTA), citric acid, and biomass contents were determined periodically. Maximum citric acid production was found after 12 days of fermentation for both isolates, namely Aspergillus niger CA16, the parent strain and gamma ray induced mutant Aspergillus niger 79/20. Citric acid production was found highest in the absence of Prescott salt by Aspergillus niger CA16 in mixed fermentation medium which was about 16.35 mg/ml and lowest in jackfruit medium, 12.88 mg/ml at day 12. Whereas in the presence of Prescott salt, lowest citric acid production was also found in jackfruit medium, 7.21 mg/ml and highest in mixed medium, 11.54 mg/ml.
    [Show full text]
  • Antifungal Properties of Lactic Acid Bacteria (LAB) Isolated from Ricinus Communis , Pentaclethra Macrophylla and Yoghurts
    Global Advanced Research Journal of Food Science and Technology (ISSN: 2315-5098) Vol. 2(1) pp. 001-006, February, 2013 Available online http://garj.org/garjfst/index.htm Copyright © 2013 Global Advanced Research Journals Full Length Research Paper Antifungal properties of lactic acid bacteria (LAB) isolated from Ricinus communis , Pentaclethra macrophylla and Yoghurts *Oranusi, S, Braide W, Oguoma O I. Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria Accepted 09 January 2012 The antifungal activity of lactic acid bacteria (LAB) isolates from Ricinus communis (Ogiri), Pentaclethra macrophylla (Ugba) and Yoghurt samples against moulds associated with food spoilage Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Mucor, Penicillium, Rhizopus and Aspergillus nidulans was investigated using agar diffusion technique. Aspergillus fumigatus was the most susceptible with inhibition zone diameters ranging from 8mm for Lactococcus lactis to 20mm for positive control fluconazole. Pediococcus spp had no antifungal effect on any of the test fungi. None of the LAB isolates had good activity against Aspergillus flavus and Rhizopus spp. Aspergillus niger was inhibited only by Lactococcus lactis . The present study indicates that the LAB isolates if optimized and improved could be used as a natural, food-grade biopreservative agent for management of fungal contamination and food spoilage, thus preventing problems associated with mycotoxins in food and feed products. It is suggested that effective GMP and HACCP application in handling the affairs of food and feed storage/production will no doubt make the use of LAB as preservative a lot easier. Keywords: Antifungal, Biopreservative, Lactic acid bacteria, Ogiri, Ugba, Yoghurt. INTRODUCTION Fungi have a profound biological and economic impact as the production of mycotoxins which are known to be toxic food spoilage agents, decomposers, plant and animal to human and animals (Sweeney and Dobson, 1998; pathogens.
    [Show full text]
  • Solid State Fermentation of Wheat Bran for Production of Glucoamylase by Aspergillus Niger Khushboo Gupta1*, S
    SSR Inst. Int. J. Life Sci. ISSN (O): 2581-8740 | ISSN (P): 2581-8732 Gupta and Nagar, 2020 DOI: 10.21276/SSR-IIJLS.2020.6.4.6 Research Article Solid State Fermentation of Wheat Bran for Production of Glucoamylase by Aspergillus niger Khushboo Gupta1*, S. J. Nagar2 1Student, Department of Biochemical Engineering, HBTU, Kanpur, India 2Professor, Department of Biochemical Engineering, HBTU, Kanpur, India *Address for Correspondence: Khushboo Gupta, Student, Department of Biochemical Engineering, HBTU, Kanpur, India E-mail: [email protected] Received: 16 Dec 2019/ Revised: 29 Jan 2020/ Accepted: 22 Jun 2020 ABSTRACT Background: Glucoamylase is an exo-enzyme use for the digestion of starch. It is widely used in production of glucose from starch, preparation of high fructose corn syrup (HFCS), baking industry, and alcohol production etc. Methods: The present study was deals with the optimization (pH, Temperature, inoculum size, inoculum age, carbon source, and nitrogen source) of the production media (wheat bran) for the production of glucoamylase from Aspergillus niger. Results: optimized study suggested that the highest production of glucoamylase was observed at 35oC temperature, pH 6, inoculum size 15% at 5 day inoculum age. Best production of glucoamylase was observed as 0.6932 U/ml at the optimized condition. Conclusion: Wheat bran is a good source for the production glucoamylase by A. niger. Glucoamylase can be produced by A. niger through solid state fermentation of wheat bran. Pre-treatment of wheat bran can improve the production of glucoamylase. Key-words: - Aspergillus niger, Glucoamylase, Solid state fermentation, SSF, Wheat bran production of glucoamylase INTRODUCTION It is an exo-enzyme use for the hydrolysis of The 0.13% trace amount of calcium’s obtained in carbohydrate.
    [Show full text]
  • An Investigation Into Techniques for Cleaning Mold-Contaminated Home Contents
    Journal of Occupational and Environmental Hygiene, 1: 442–447 ISSN: 1545-9624 print / 1545-9632 online Copyright c 2004 JOEH, LLC DOI: 10.1080/15459620490462823 An Investigation into Techniques for Cleaning Mold-Contaminated Home Contents S.C. Wilson, T.L. Brasel, C.G. Carriker, G.D. Fortenberry, M.R. Fogle, J.M. Martin, C. Wu, L.A. Andriychuk, E. Karunasena, and D.C. Straus Center for Indoor Air Research, Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas This study examined the efficacy of the following treatments and comprehensive testing methodologies for determining to reduce selected fungal spore and mycotoxin levels on materi- what levels of spores and/or mycotoxins are present on contents als commonly found in home contents: (1) gamma irradiation inside structures. For example, the identification of fungal at a 10–13 kiloGray exposure, (2) a detergent/bleach wash, and (3) a steam cleaning technique. A minimum of six repli- colonies on contents can be performed using tape lift and swab (1) cates were performed per treatment. Paper, cloth, wood, and sampling; however, some items may have spores hidden carpet were inoculated with either fungal spores (Stachybotrys inside them or in hard to reach areas, and these sampling chartarum, Aspergillus niger, Penicillium chrysogenum,or techniques are often inadequate to extract the spores. Sam- 2 Chaetomium globosum) at 240,000 spores/2.54 cm of mate- pling techniques for spores and hyphae on contents are there- rial or with the mycotoxins roridin A, T-2, and verrucarin A at fore best viewed as being approximate and not comprehensive 10 µg per 2.54 cm2 of material.
    [Show full text]
  • The Quest for a General and Reliable Fungal DNA Barcode
    The Open Applied Informatics Journal, 2011, 5, (Suppl 1-M6) 45-61 45 Open Access The Quest for a General and Reliable Fungal DNA Barcode Vincent Robert*,1, Szaniszlo Szöke1, Ursula Eberhardt1, Gianluigi Cardinali2, Wieland Meyer3, Keith A. Seifert4, C. Andre Lévesque4 and Chris T. Lewis4 1CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 2Dipartimento Biologia Applicata- Microbiologia, Università degli Studi di Perugia, Perugia, Italy 3Molecular Mycology Research Laboratory, CIDM, Westmead Millennium Institute, SEIB, Sydney Medical School - Westmead Hospital, The University of Sydney, Sydney, Australia 4Biodiversity (Mycology & Botany), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, Canada Abstract: DNA sequences are key elements for both identification and classification of living organisms. Mainly for historical reasons, a limited number of genes are currently used for this purpose. From a mathematical point of view, any DNA segment, at any location, even outside of coding regions and even if they do not align, could be used as long as PCR primers could be designed to amplify them. This paper describes two methods to search genomic data for the most efficient DNA segments that can be used for identification and classification. Keywords: Genome, molecular, sequences, barcoding, identification, classification, fungi. 1. INTRODUCTION When first large molecular phylogenetic studies were completed, it was obvious that many clades were poorly Since the early days of classification, taxonomists have supported statistically when only one or two genes were struggled with the available information and characteristics used. Recently, several authors explored possibilities for of their organisms of interest to develop systems that reflect analyzing several genes to obtain the true phylogeny [1-7].
    [Show full text]
  • Analysis of Regulation of Pentose Utilisation in Aspergillus Niger Reveals Evolutionary Adaptations in Eurotiales
    available online at www.studiesinmycology.org StudieS in Mycology 69: 31–38. 2011. doi:10.3114/sim.2011.69.03 Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales E. Battaglia1, L. Visser1, A. Nijssen1, G.J. van Veluw1, H.A.B. Wösten1 and R.P. de Vries1,2* 1Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 2CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. *Correspondence: Ronald P. de Vries, [email protected] Abstract: Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP). In this study, the L-arabinose responsive transcriptional activator (AraR) is identified in Aspergillus niger and was shown to control the L-arabinose catabolic pathway as well as expression of genes encoding extracellular L-arabinose releasing enzymes. AraR interacts with the D-xylose-responsive transcriptional activator XlnR in the regulation of the pentose catabolic pathway, but not with respect to release of L-arabinose and D-xylose. AraR was only identified in the Eurotiales, more specifically in the family Trichocomaceae and appears to have originated from a gene duplication event (from XlnR) after this order or family split from the other filamentous ascomycetes. XlnR is present in all filamentous ascomycetes with the exception of members of the Onygenales. Since the Onygenales and Eurotiales are both part of the subclass Eurotiomycetidae, this indicates that strong adaptation of the regulation of pentose utilisation has occurred at this evolutionary node.
    [Show full text]
  • Aspergillus and Penicillium Identification Using DNA Sequences: Barcode Or MLST?
    Appl Microbiol Biotechnol (2012) 95:339–344 DOI 10.1007/s00253-012-4165-2 MINI-REVIEW Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Stephen W. Peterson Received: 28 March 2012 /Revised: 9 May 2012 /Accepted: 10 May 2012 /Published online: 27 May 2012 # Springer-Verlag (outside the USA) 2012 Abstract Current methods in DNA technology can detect several commodities. Aspergillus fumigatus, Aspergillus single nucleotide polymorphisms with measurable accuracy flavus, Aspergillus terreus (Walsh et al. 2011), and using several different approaches appropriate for different Talaromyces (syn. 0 Penicillium) marneffei (Sudjaritruk uses. If there are even single nucleotide differences that are et al. 2012) are recognized opportunistic pathogens of humans, invariant markers of the species, we can accomplish identifi- especially those with weakened immune systems. Aspergillus cation through rapid DNA-based tests. The question of whether niger is used for the production of enzymes and citric acid we can reliably detect and identify species of Aspergillus and (e.g., Dhillon et al. 2012), Aspergillus oryzae is used to pro- Penicillium turns mainly upon the completeness of our alpha duce soy sauce, Penicillium roqueforti ripens blue cheeses and taxonomy, our species concepts, and how well the available penicillin is produced by Penicillium chrysogenum (e.g., Xu et DNA data coincide with the taxonomic diversity in the family al. 2012). Heat-resistant Byssochlamys species can grow in Trichocomaceae. No single gene is yet known that is invariant pasteurized fruit juices (Sant’ana et al. 2010). These genera within species and variable between species as would be opti- along with a few others comprise the family Trichocomaceae.
    [Show full text]
  • Aspergillus Species of the Nigri Section Being Regarded As Troublesome, a Number of Methods Have Been Proposed to Aid in the Classification of This Section
    Brazilian Journal of Microbiology (2011) 42: 761-773 ISSN 1517-8382 IDENTIFICATION OF FUNGI OF THE GENUS ASPERGILLUS SECTION NIGRI USING POLYPHASIC TAXONOMY Daiani M. Silva1; Luís R. Batista*2; Elisângela F. Rezende 2; Maria Helena P. Fungaro 3; Daniele Sartori 3; Eduardo Alves4 1Universidade Federal de Lavras, Departamento de Biologia, Lavras, MG, Brasil; 2Universidade Federal de Lavras, Departamento de Ciências dos Alimentos, Lavras, MG, Brasil; 3Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brasil; 4Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, Brasil. Submitted: December 22, 2009; Returned to authors for corrections: July 20, 2010; Approved: January 13, 2011. ABSTRACT In spite of the taxonomy of the Aspergillus species of the Nigri Section being regarded as troublesome, a number of methods have been proposed to aid in the classification of this Section. This work aimed to distinguish Aspergillus species of the Nigri Section from foods, grains and caves on the basis in Polyphasic Taxonomy by utilizing morphologic and physiologic characters, and sequencing of ß-tubulin and calmodulin genes. The morphologic identification proved useful for some species, such as A. carbonarius and Aspergillus sp UFLA DCA 01, despite not having been totally effective in elucidating species related to A. niger. The isolation of the species of the Nigri Section on Creatine Sucrose Agar (CREA) enabled to distinguish the Aspergillus sp species, which was characterized by the lack of sporulation and by the production of sclerotia. Scanning Electron microscopy (SEM) allowed distinguishing the species into two distinct groups. The production of Ochratoxin A (OTA) was only found in the A.
    [Show full text]