Unusual Mineral Diversity in a Hydrothermal Vein-Type Deposit: the Clara Mine, Sw Germany, As a Type Example
427 The Canadian Mineralogist Vol. 57, pp. 427-456 (2019) DOI: 10.3749/canmin.1900003 UNUSUAL MINERAL DIVERSITY IN A HYDROTHERMAL VEIN-TYPE DEPOSIT: THE CLARA MINE, SW GERMANY, AS A TYPE EXAMPLE § GREGOR MARKL Universitat¨ Tubingen,¨ Fachbereich Geowissenschaften, Wilhelmstraße 56, D-72074 Tubingen,¨ Germany MAXIMILIAN F. KEIM Technische Universitat¨ Munchen,¨ Munich School of Engineering, Lichtenbergstraße 4a, 85748 Garching, Germany RICHARD BAYERL Ludwigstrasse 8, 70176 Stuttgart, Germany ABSTRACT The Clara baryte-fluorite-(Ag-Cu) mine exploits a polyphase, mainly Jurassic to Cretaceous, hydrothermal unconformity vein-type deposit in the Schwarzwald, SW Germany. It is the type locality for 13 minerals, and more than 400 different mineral species have been described from this occurrence, making it one of the top five localities for mineral diversity on Earth. The unusual mineral diversity is mainly related to the large number and diversity of secondary, supergene, and low- temperature hydrothermal phases formed from nine different primary ore-gangue associations observed over the last 40 years; these are: chert/quartz-hematite-pyrite-ferberite-scheelite with secondary W-bearing phases; fluorite-arsenide-selenide-uraninite- pyrite with secondary selenides and U-bearing phases (arsenates, oxides, vanadates, sulfates, and others); fluorite-sellaite with secondary Sr- and Mg-bearing phases; baryte-tennantite/tetrahedrite ss-chalcopyrite with secondary Cu arsenates, carbonates, and sulfates; baryte-tennantite/tetrahedrite ss-polybasite/pearceite-chalcopyrite, occasionally accompanied by Ag6Bi6Pb-bearing sulfides with secondary Sb oxides, Cu arsenates, carbonates, and sulfates; baryte-chalcopyrite with secondary Fe- and Cu- phosphates; baryte-pyrite-marcasite-chalcopyrite with secondary Fe- and Cu-sulfates; quartz-galena-gersdorffite-matildite with secondary Pb-, Bi-, Co-, and Ni-bearing phases; and siderite-dolomite-calcite-gypsum/anhydrite-quartz associations.
[Show full text]