I Synthesis of Structurally and Stereochemically Diverse Tetrahydropyran Structures Via DDQ-Mediated Oxidative Carbon‒Hydrogen Bond Activation
Total Page:16
File Type:pdf, Size:1020Kb
Synthesis of Structurally and Stereochemically Diverse Tetrahydropyran Structures via DDQ-Mediated Oxidative Carbon‒Hydrogen Bond Activation by Lei Liu B.S., Lanzhou University, Lanzhou, China, 2003 M.S., Lanzhou University, Lanzhou, China, 2006 Submitted to the Graduate Faculty of School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2011 i UNIVERSITY OF PITTSBURGH SCHOOL OF ARTS AND SCIENCES This thesis was presented by Lei Liu It was defended on March 2, 2011 and approved by Dr. Peter Wipf, Professor, Department of Chemistry Dr. Kazunori Koide, Associate Professor, Department of Chemistry Dr. Xiang-Qun Xie, Professor, Department of Pharmaceutical Sciences Dr. Paul E. Floreancig, Professor, Department of Chemistry Thesis Director: Dr. Paul E. Floreancig, Professor, Department of Chemistry ii Synthesis of Structurally and Stereochemically Diverse Tetrahydropyran Structures via DDQ-Mediated Oxidative Carbon‒Hydrogen Bond Activation Lei Liu, PhD University of Pittsburgh, 2011 The 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated oxidative carbon– hydrogen bond cleavage of allylic ethers has been studied. The generated α,β-unsaturated oxocarbenium ions can be captured by appended enol acetate nucleophiles to stereoselectively provide cis-2,6-disubstituted tetrahydropyrones. Alkenes with a wide assortment of substitution patterns undergo oxidative cyclizations efficiently, and commonly encountered functional groups on either side of the ether linkage are well tolerated. The scope of this method has successfully been expanded to (silyl)allylic and propargylic ethers. The generated vinylsilane-substituted tetrahydropyrans are versatile precursors for a wide range of functional group interconversions and stereocontrolled additions. The cyclization of (silyl)allylic ethers proceeds efficiently to generate cis-2,6-disubstituted tetrahydropyrones with excellent stereocontrol, and therefore is preferable for target-oriented syntheses. The cyclization of propargylic ethers results in a mixture of cis- and trans-2,6-disubstituted tetrahydropyrones, and it is applicable in diversity-oriented syntheses. iii Two models of the geometries of 1,1-disubstituted oxocarbenium ions (A) and the conformations of oxocarbenium ions that contain a tertiary stereocenter (B) have been designed. Both models have been applied to highly stereoselective syntheses of tetrahydropyrans containing tertiary ethers. DDQ-catalyzed oxidative cyclizations for tetrahydropyran synthesis have been achieved by using MnO2 as an inexpensive and environmentally benign terminal oxidant. This catalytic system is also applicable to other commonly encountered DDQ-mediated reactions, such as PMB ether cleavages and dehydrogenations. The products are quite easy to purify, and the yields are comparable with the corresponding reactions using stoichiometric DDQ. iv v TABLE OF CONTENTS PREFACE ............................................................................................................................... XVII 1.0 CARBON‒CARBON BOND CONSTRUCTION THROUGH OXIDATIVE CARBON‒HYDROGEN BOND CLEAVAGE OF VINYL AND ALLYLIC ETHERS ....... 1 1.1 INTRODUCTION OF C‒H BOND ACTIVATION ........................................ 1 1.2 DEVELOPMENT OF DDQ-MEDIATED OXIDATIVE C‒H CLEAVAGE OF VINYL AND ALLYLIC ETHERS ............................................................................. 17 1.2.1 DDQ-mediated oxidative C‒H activation of vinyl ether substrates .......... 19 1.2.2 DDQ-mediated oxidative C‒H activation of allylic ether substrates ........ 22 I. Substituent effects on allylic ethers ............................................................ 23 II. Functional group compatibility .................................................................. 25 1.3 DISCUSSION ..................................................................................................... 30 1.3.1 Vinyl ether substrates .................................................................................... 30 1.3.2 Allylic ether substrates .................................................................................. 32 I. Proposed mechanism for allylic ether oxidation ....................................... 32 II. Reaction rate analysis .................................................................................. 33 III. Conserved olefin geometry ......................................................................... 36 IV. Functional group compatibility .................................................................. 37 1.4 SUMMARY ........................................................................................................ 39 vi 2.0 STRUCTURALLY AND STEREOCHEMICALLY DIVERSE TETRAHYDROPYRAN SYNTHESIS VIA OXIDATIVE C‒H CLEAVAGE OF (SILYL)ALLYLIC AND PROPARGYLIC ETHERS ............................................................ 40 2.1 INTRODUCTION ............................................................................................. 40 2.1.1 Vinylsilanes in palladium-catalyzed cross-coupling reactions .................. 41 2.1.2 Silyl groups as masked hydroxyl groups ..................................................... 44 2.1.3 Vinylsilanes as removable stereocontrol elements ...................................... 46 2.2 DEVELOPMENT OF DDQ-MEDIATED OXIDATIVE C‒H CLEAVAGE OF (SILYL)ALLYLIC ETHERS ..................................................................................... 49 2.3 DIVERSE FUNCTIONALIZATION OF VINYLSILANE-SUBSTITUTED TETRAHYDROPYRONES .............................................................................................. 57 2.4 DISCUSSION ..................................................................................................... 66 2.4.1 Control of olefin geometry ............................................................................ 66 2.4.2 Oxidation of benzylsilane substrate ............................................................. 67 2.4.3 Reaction rate analysis .................................................................................... 68 2.4.4 Stereochemically diverse library syntheses ................................................. 69 2.5 SUMMARY ........................................................................................................ 72 3.0 STEREOSELECTIVE SYNTHESIS OF TERTIARY ETHERS THROUGH GEOMETRIC CONTROL OF HIGHLY SUBSTITUTED OXOCARBENIUM IONS ..... 73 3.1 INTRODUCTION OF 1,1-DISUBSTITUTED OXOCARBENIUM IONS AS REACTION INTERMEDIATES ...................................................................................... 73 3.2 A MODEL STUDY ON THE GEOMETRIES OF 1,1-DISUBSTITUTED OXOCARBENIUM IONS ................................................................................................. 77 vii 3.3 A MODEL STUDY ON THE CONFORMATIONS OF OXOCARBENIUM IONS WITH PREEXISTING TERTIARY STEREOCENTERS ................................. 87 3.4 DISCUSSION ..................................................................................................... 93 3.5 SUMMARY ........................................................................................................ 97 4.0 DDQ-CATALYZED REACTIONS USING MANGANESE DIOXIDE AS A TERMINAL OXIDANT ............................................................................................................. 98 4.1 INTRODUCTION OF PROTOCOLS FOR DDQ-REGENERATION FROM DDQH2 .................................................................................................................... 98 4.2 RESULTS AND DISCUSSION ...................................................................... 101 4.3 SUMMARY ...................................................................................................... 108 APPENDIX A ............................................................................................................................ 109 APPENDIX B ............................................................................................................................ 141 APPENDIX C ............................................................................................................................ 189 APPENDIX D ............................................................................................................................ 216 BIBLIOGRAPHY ..................................................................................................................... 226 viii LIST OF TABLES Table 1. DDQ-mediated oxidative C‒H cleavage of phenyl-substituted allylic ethers ................ 13 Table 2. DDQ-mediated oxidative C‒H cleavage of allylic ethersa ............................................. 25 Table 3. Functional group compatibility with DDQ-mediated oxidative C‒H cleavagea ............ 29 Table 4. DDQ-mediated C‒H cleavage of substituted (silyl)allylic ethersa ................................. 56 Table 5. Optimizing the synthesis of tetrahydropyran 3.43 .......................................................... 84 Table 6. Tertiary ether synthesis from allylic and benzylic ethersa .............................................. 86 Table 7. Tertiary ether synthesis from prenyl ethers 3.55-3.60a ................................................... 91 Table 8. Terminal oxidant screen and reaction condition optimizationa .................................... 103 Table 9. DDQ-catalyzed oxidative cyclization reactionsa .......................................................... 105 ix LIST OF FIGURES Figure 1. Synthetic efficiency of traditional