Click Chemistry (PDF File)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
14.8 Organic Synthesis Using Alkynes
14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 666 666 CHAPTER 14 • THE CHEMISTRY OF ALKYNES The reaction of acetylenic anions with alkyl halides or sulfonates is important because it is another method of carbon–carbon bond formation. Let’s review the methods covered so far: 1. cyclopropane formation by the addition of carbenes to alkenes (Sec. 9.8) 2. reaction of Grignard reagents with ethylene oxide and lithium organocuprate reagents with epoxides (Sec. 11.4C) 3. reaction of acetylenic anions with alkyl halides or sulfonates (this section) PROBLEMS 14.18 Give the structures of the products in each of the following reactions. (a) ' _ CH3CC Na| CH3CH2 I 3 + L (b) ' _ butyl tosylate Ph C C Na| + L 3 H3O| (c) CH3C' C MgBr ethylene oxide (d) L '+ Br(CH2)5Br HC C_ Na|(excess) + 3 14.19 Explain why graduate student Choke Fumely, in attempting to synthesize 4,4-dimethyl-2- pentyne using the reaction of H3C C'C_ Na| with tert-butyl bromide, obtained none of the desired product. L 3 14.20 Propose a synthesis of 4,4-dimethyl-2-pentyne (the compound in Problem 14.19) from an alkyl halide and an alkyne. 14.21 Outline two different preparations of 2-pentyne that involve an alkyne and an alkyl halide. 14.22 Propose another pair of reactants that could be used to prepare 2-heptyne (the product in Eq. 14.28). 14.8 ORGANIC SYNTHESIS USING ALKYNES Let’s tie together what we’ve learned about alkyne reactions and organic synthesis. The solu- tion to Study Problem 14.2 requires all of the fundamental operations of organic synthesis: the formation of carbon–carbon bonds, the transformation of functional groups, and the establish- ment of stereochemistry (Sec. -
“Alkenyl Nonaflates from Carbonyl Compounds: New Synthesis, Elimination Reactions, and Systematic Study of Heck and Sonogashira Cross-Couplings”
“Alkenyl nonaflates from carbonyl compounds: New synthesis, elimination reactions, and systematic study of Heck and Sonogashira cross-couplings” A thesis submitted to the Freie Universität Berlin for the degree of Dr. rer. nat. Faculty of Chemistry and Biochemistry 2009 Michael Alexander Kolja Vogel Department of Biology, Chemistry and Pharmacy FU Berlin 1. Gutachter: Prof. Dr. C. B. W. Stark 2. Gutachter: Prof. Dr. H.-U. Reißig Promotionsdatum: 19.06.2009 Contents Contents Contents 3 Abbreviations 7 Declaration and Copyright Statement 9 The Author 12 Acknowledgements 13 Abstract / Zusammenfassung 14 Introduction and Objective 16 Chapter 1 Alkenyl nonaflates from enolizable carbonyl precursors – 25 methodology, preparation, and elimination reactions 1.1. Purification of NfF and compatibility experiments with bases 26 1.2. Application of the internal quenching protocol for the 30 preparation of cyclic alkenyl nonaflates 1.3. Reactions of acyclic ketones with NfF and phosphazene bases 36 1.3.1 General remarks 36 1.3.2. Synthesis of alkynes: reactivity and selectivity 38 1.4. The formation of allenes 45 1.5. Conversion of aldehydes with NfF and phosphazene bases 50 1.5.1. Alkenyl nonaflate formation 50 1.5.2. Formation of terminal alkynes 52 1.6. Conclusions 54 Chapter 2 The alkenyl nonaflates in the Heck reaction – 56 methodology and reactivity 3 Contents 2.1. General remarks 57 2.2. Methodology and initial experiments 59 2.3. Systematic investigations 61 2.3.1. The solvent effect 61 2.3.2. The effect of different bases 65 2.3.3. The effect of additives 66 2.3.4. The effect of triphenylphosphine 71 2.3.5. -
New Methodologies for the Synthesis Of
NEW METHODOLOGIES FOR THE SYNTHESIS OF ORGANOPHOSPHORUS COMPOUNDS by MONIKA I. ANTCZAK Master of Science, 2002 Wroclaw University of Technology Wroclaw, Poland Submitted to the Graduate Faculty of the College of Science and Engineering Texas Christian University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2008 NEW METHODOLOGIESFOR THE SYNTHESISOF ORGANOPHOSPHORUSCOMPOLNDS by MonikaI. Antczak Dissertationapproved: Maior Professor f Scienceand Engineering Copyright by Monika I. Antczak 2008 ACKNOWLEDGMENTS I wish to acknowledge Prof. Jean-Luc Montchamp for the constant interest in the progress of my work over the past five years. I also wish to thank him for his advice and intense discussions, which helped me in expanding my knowledge and understanding of organic chemistry, and in guiding me in my educational progress at Texas Christian University. His patience and support helped me overcome some difficult situation and successfully completing my Ph.D. program. I express my gratitude to my colleagues and friends, Jennifer Tellez, Dr. Laëtitia Coudray, Yamina Belabassi and Dr. Clemence Queffelec for their help, guidance and support. I also would like to thank Dr. Onofrio Annunziata, Dr. Waldek Zerda and Dr. Dale Huckaby for their guidance and interesting discussions during these years. I wish to thank: Monika Wieligor and Dr. Mauricio Quiroz for their friendship and constant support. Finally, I wish to thank my parents for their unconditional love and support. The Chemistry Department at Texas Christian University, the National Science Foundation (CHE-0242898), the National Institute of General Medical Sciences/NIH (R01 GM067610), and the Robert A. Welch Foundation (P-1666) are gratefully acknowledged for the financial support of this research. -
A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put Into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W
Chiang Mai J. Sci. 2009; 36(2) 247 Chiang Mai J. Sci. 2009; 36(2) : 247-257 www.science.cmu.ac.th/journal-science/josci.html Invited Paper A Conceptual Design of Fluorous Surfactants Based on a Heterocyclic Core, Put into Practice Through Synthesis of Fluorous 1,2,3-Triazoles Roger W. Read* and Xiao Bei Wang School of Chemistry, The University of New South Wales, UNSW Sydney NSW 2052, Australia. *Author for correspondence; e-mail: [email protected] ABSTRACT The concept of a design of fluorous surfactants based on a heterocyclic core molecule is introduced and illustrated through the synthesis of polyfluoroalkyl-substituted 1,2,3-triazoles. A two step, one-pot process is described in which a small range of perfluoroalkylethyl azides is prepared in situ and made to undergo Huisgen 1,3-dipolar cycloaddition with terminal alkynes. Measurement of the changes in surface tension of the library of fluorous triazoles at different concentrations in m-xylene reveals unusual behaviour in molecules with a secondary, C8 alkyl substituent. Keywords: organic synthesis, heterocycles, fluorous chemistry, surfactants, click chemistry, polyfluoroalkyl-1,2,3-triazoles. 1. INTRODUCTION Fluorous surfactants have been studied might have applications in the design of new widely, not least for their interest in drug delivery systems and, through self- combination with perfluorocarbons, as assembly, unique molecular devices. emergency blood replacements.[1] Highly Considerable literature exists in the area of fluorinated amphiphiles and colloid systems fluorous block polymers with localised are chemically stable and can carry high crystalline segments and fluorous liposomes concentrations of oxygen and carbon dioxide, and vesicles for drug delivery, but, with a few and therefore have many applications in the exceptions [8-11], most fluorous components biomedical field [2,3]. -
Chapter 8 - Alkynes: an Introduction to Organic Synthesis
Chapter 8 - Alkynes: An Introduction to Organic Synthesis Draw structures corresponding to each of the following names. 1. ethynylcyclopropane Answer: CCH 2. 3,10-dimethyl-6-sec-butylcyclodecyne Answer: 3. 4-bromo-3,3-dimethyl-1-hexen-5-yne CH3 Br Answer: H 2C CH C CH C C H CH3 4. acetylene Answer: H CCH Provide names for each compound below. CH3 5. CH3C CCHCH2CH2CH3 Answer: 4-methyl-2-heptyne CH 3 6. CCH Answer: 1-ethynyl-2-methylcyclopentane Test Items for McMurry’s Organic Chemistry, Seventh Edition 59 The compound below has been isolated from the safflower plant. Consider its structure to answer the following questions. H H CCCCCCCC H H3C C C C H H C H H 7. What is the molecular formula for this natural product? Answer: C13H10 8. What is the degree of unsaturation for this compound? Answer: We can arrive at the degree of unsaturation for a structure in two ways. Since we know that the degree of unsaturation is the number of rings and/or multiple bonds in a compound, we can simply count them. There are three double bonds (3 degrees) and three triple bonds (six degrees), so the degree of unsaturation is 9. We can verify this by using the molecular formula, C13H10, to calculate a degree of unsaturation. The saturated 13-carbon compound should have the base formula C13H28, so (28 - 10) ÷ 2 = 18 ÷ 2 = 9. 9. Assign E or Z configuration to each of the double bonds in the compound. Answer: H H E CCCCCCCCE H H3C C C C H H C H H 10. -
The Chemistry of Alkynes
14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 644 14 14 The Chemistry of Alkynes An alkyne is a hydrocarbon containing a carbon–carbon triple bond; the simplest member of this family is acetylene, H C'C H. The chemistry of the carbon–carbon triple bond is similar in many respects toL that ofL the carbon–carbon double bond; indeed, alkynes and alkenes undergo many of the same addition reactions. Alkynes also have some unique chem- istry, most of it associated with the bond between hydrogen and the triply bonded carbon, the 'C H bond. L 14.1 NOMENCLATURE OF ALKYNES In common nomenclature, simple alkynes are named as derivatives of the parent compound acetylene: H3CCC' H L L methylacetylene H3CCC' CH3 dimethylacetyleneL L CH3CH2 CC' CH3 ethylmethylacetyleneL L Certain compounds are named as derivatives of the propargyl group, HC'C CH2 , in the common system. The propargyl group is the triple-bond analog of the allyl group.L L HC' C CH2 Cl H2CA CH CH2 Cl L L LL propargyl chloride allyl chloride 644 14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 645 14.1 NOMENCLATURE OF ALKYNES 645 We might expect the substitutive nomenclature of alkynes to be much like that of alkenes, and it is. The suffix ane in the name of the corresponding alkane is replaced by the suffix yne, and the triple bond is given the lowest possible number. H3CCC' H CH3CH2CH2CH2 CC' CH3 H3C CH2 C ' CH L L L L L L L propyne 2-heptyne 1-butyne H3C CH C ' C CH3 HC' C CH2 CH2 C' C CH3 L L L L 1,5-heptadiyneLL L "CH3 4-methyl-2-pentyne Substituent groups that contain a triple bond (called alkynyl groups) are named by replac- ing the final e in the name of the corresponding alkyne with the suffix yl. -
Simple Molecules, Highly Efficient Amination 1
1 1 Simple Molecules, Highly Effi cient Amination Shunsuke Chiba and Koichi Narasaka 1.1 Introduction In the last two decades, explosive progress has been made in synthetic methods for production of amino compounds, due to their rapidly increasing applications in pharmaceutical and material sciences. Development of amination reagents for the construction of new carbon – nitrogen bonds is one of the most important and basic processes for the synthesis of amino molecules, and this chapter introduces simple and useful amination reagents classifi ed by reaction type, such as electro- philic amination reagents, including transition metal – nitrene and nitrido complexes, radical- mediated amination reagents, and nucleophilic amination (Gabriel - type) reagents. 1.2 Hydroxylamine Derivatives Hydroxylamine derivatives are one of the most versatile and simple amination reagents, leading the variety of nitrogen - containing compounds. This section mainly focuses on recent advances in electrophilic amination of carbon nucleo- philes with various hydroxylamine derivatives. 1.2.1 O - Sulfonylhydroxylamine Tamura has reported the synthesis of O - mesitylsulfonylhydroxylamine (MSH; 1 ; Figure 1.1 ) and related compounds and has examined their reactions with various nucleophiles in detail [1] . With regard to the formation of C − N bonds by the use of MSH, however, the applicable carbanions were quite limited – to stabilized enolates only – and the product yields of the resulting amines were quite low. The electrophilic amination of organolithium compounds with the methyllithium - methoxyamine system, long recognized as a potentially useful Amino Group Chemistry. From Synthesis to the Life Sciences. Edited by Alfredo Ricci Copyright © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31741-7 2 1 Simple Molecules, Highly Effi cient Amination Figure 1.1 Tamura reagent (MSH) 1 . -
Ep 2097400 B1
(19) TZZ ZZZ_T (11) EP 2 097 400 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C07D 401/04 (2006.01) C07D 401/14 (2006.01) of the grant of the patent: C07D 491/052 (2006.01) C07D 498/04 (2006.01) 03.07.2013 Bulletin 2013/27 A61K 31/47 (2006.01) A61P 31/04 (2006.01) (21) Application number: 07860629.0 (86) International application number: PCT/JP2007/075434 (22) Date of filing: 28.12.2007 (87) International publication number: WO 2008/082009 (10.07.2008 Gazette 2008/28) (54) FUSED SUBSTITUTED AMINOPYRROLIDINE DERIVATIVE ANELLIERTES SUBSTITUIERTES AMINOPYRROLIDINDERIVAT DÉRIVÉ D’AMINOPYRROLIDINE SUBSTITUÉ LIÉ PAR FUSION (84) Designated Contracting States: • TSUDA, Toshifumi AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Edogawa-ku HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE Tokyo 134-8630 (JP) SI SK TR • NAKAYAMA, Kiyoshi Edogawa-ku (30) Priority: 05.01.2007 JP 2007000667 Tokyo 134-8630 (JP) 22.03.2007 JP 2007074991 • TAKEMURA, Makoto Edogawa-ku (43) Date of publication of application: Tokyo 134-8630 (JP) 09.09.2009 Bulletin 2009/37 • YOSHIDA, Kenichi Edogawa-ku (60) Divisional application: Tokyo 134-8630 (JP) 12186361.7 / 2 540 715 • MIYAUCHI, Rie Edogawa-ku (73) Proprietor: Daiichi Sankyo Company, Limited Tokyo 134-8630 (JP) Chuo-ku • NAGAMOCHI, Masatoshi Tokyo 103-8426 (JP) Edogawa-ku Tokyo 134-8630 (JP) (72) Inventors: • TAKAHASHI, Hisashi (74) Representative: Fairbairn, Angus Chisholm Edogawa-ku Marks & Clerk LLP Tokyo 134-8630 (JP) 90 Long Acre • KOMORIYA, Satoshi London Edogawa-ku WC2E 9RA (GB) -
1-Iodo-1-Pentyne
MIAMI UNIVERSITY-THE GRADUATE SCHOOL CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Lizhi Zhu Candidate for the Degree: Doctor of Philosophy ________________________________ Robert E. Minto, Director ________________________________ John R. Grunwell, Reader ________________________________ John F. Sebastian, Reader ________________________________ Ann E. Hagerman, Reader ________________________________ Richard E. Lee, Graduate School Representative ABSTRACT INVESTIGATING THE BIOSYNTHESIS OF POLYACETYLENES: SYNTHESIS OF DEUTERATED LINOLEIC ACIDS & MECHANISM STUDIES OF DMDS ADDITION TO 1,4-ENYNES By Lizhi Zhu A wide range of polyacetylenic natural products possess antimicrobial, antitumor, and insecticidal properties. The biosyntheses of these natural products are widely distributed among fungi, algae, marine sponges, and higher plants. As details of the biosyntheses of these intriguing compounds remains scarce, it remains important to develop molecular probes and analytical methods to study polyacetylene secondary metabolism. An effective pathway to prepare selectively deuterium-labeled linoleic acids was developed. By this Pd-catalyzed method, deuterium can be easily introduced into the vinyl position providing deuterolinoleates with very high isotopic purity. This method also provides a general route for the construction of 1,4-diene derivatives with different chain lengths and 1,4-diene locations. Linoleic acid derivatives (12-d, 13-d and 16,16,17,17,18,18,18-d7) were synthesized according to this method. A stereoselective synthesis of methyl (14Z)- and (14E)-dehydrocrepenynate was achieved in five to six steps that employed Pd-catalyzed cross-coupling reactions to construct the double bonds between C14 and C15. Compared with earlier methods, the improved syntheses are more convenient (no spinning band distillations or GLC separation of diastereomers were necessary) and higher Z/E ratios were obtained. -
Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: the Challenge of C6 and C5 Sugars Consumption
energies Article Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption Rita H. R. Branco, Mariana S. T. Amândio, Luísa S. Serafim and Ana M. R. B. Xavier * CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitario de; Santiago, 3810-193 Aveiro, Portugal; [email protected] (R.H.R.B.); [email protected] (M.S.T.A.); luisa.serafi[email protected] (L.S.S.) * Correspondence: [email protected]; Tel.: +351-234-370-716 Received: 27 December 2019; Accepted: 4 February 2020; Published: 8 February 2020 Abstract: Second-generation bioethanol production’s main bottleneck is the need for a costly and technically difficult pretreatment due to the recalcitrance of lignocellulosic biomass (LCB). Chemical pulping can be considered as a LCB pretreatment since it removes lignin and targets hemicelluloses to some extent. Chemical pulps could be used to produce ethanol. The present study aimed to investigate the batch ethanol production from unbleached Kraft pulp of Eucalyptus globulus by separate hydrolysis and fermentation (SHF). Enzymatic hydrolysis of the pulp resulted in a glucose yield of 96.1 3.6% and a xylose yield of 94.0 7.1%. In an Erlenmeyer flask, fermentation of the ± ± hydrolysate using Saccharomyces cerevisiae showed better results than Scheffersomyces stipitis. At both the Erlenmeyer flask and bioreactor scale, co-cultures of S. cerevisiae and S. stipitis did not show significant improvements in the fermentation performance. The best result was provided by S. cerevisiae alone in a bioreactor, which fermented the Kraft pulp hydrolysate with an ethanol yield of 0.433 g g 1 and a volumetric ethanol productivity of 0.733 g L 1 h 1, and a maximum ethanol · − · − · − concentration of 19.24 g L 1 was attained. -
Read the Book of Abstracts
2o21 ONLINE May 10- 12 2021 International Symposium on SupraBiomolecular Systems 2021 Table of Contents TBD 1 Prof. Andreas Herrmann TBD 2 Prof. Rachel O’Reilly Tackling challenges in nanomedicine with responsive supramolecular polymers and advanced mi- croscopy 3 Dr. Silvia Pujals, Mr. Edgar Fuentes, Dr. Lorenzo Albertazzi Water Soluble Nanotubular Architectures from Amphiphilic Dinucleobases 4 Dr. Fatima Aparicio, Ms. Paula Blue Chamorro, Dr. Raquel Chamorro, Prof. David Gonzalez-Rodriguez Glyconucleolipids as new drug delivery systems for Parkinson’s disease treatment 5 Mr. Anthony Cunha, Dr. Alexandra Gaubert, Prof. Philippe Barthélémy, Dr. Benjamin Dehay, Dr. Laurent Latxague Membraneless compartments based on intrinsically disordered proteins: from biology towards new pro- tein materials 6 Prof. Paolo Arosio Low Molecular Weight Oleogel formation via unique keto-enol-type nucleolipid supramolecular assembly 8 Mr. Arthur KLUFTS-EDEL, Ms. Bérangère Dessane, Dr. Aladin Hamoud, Dr. Geoffrey Prévot, Dr. Antoine Lo- quet, Dr. Brice Kauffmann, Prof. Philippe Barthélémy, Prof. Sylvie Crauste-Manciet, Dr. Valérie Desvergnes Multi-responsive supramolecular fibers from peptide-based amphiphiles 9 Mr. Edgar Fuentes, Dr. Marieke Gerth, Dr. Jose Augusto Berrocal, Dr. Carlo Matera, Prof. Pau Gorostiza, Prof. Ilja Voets, Dr. Silvia Pujals, Dr. Lorenzo Albertazzi Electrostatic Protein Assemblies Towards Biohybrid Photoactive Materials 10 Dr. Eduardo Anaya-Plaza, Prof. Mauri Kostiainen Exploring Polyoxometalates as Non-destructive Staining Agents for Contrast-Enhanced Microfocus Com- puted Tomography of Biological Tissues 11 Ms. Sarah Vangrunderbeeck, Mr. Sébastien De Bournonville, Mrs. Hong Giang T. Ly, Prof. Wim De Borggraeve, Prof. Tatjana Parac-Vogt, Prof. Greet Kerckhofs Hydrogels with Photo-Switchable Stiffness: A Tool to Mimic Extra Cellular Matrix 13 Prof. -
Synthesis of Organometallic PNA Oligomers by Click Chemistry
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 1 Supporting Information: Synthesis of organometallic PNA oligomers by click chemistry Gilles Gasser, Nina Hüsken, S. David Köster and Nils Metzler-Nolte* Department of Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150; 44801 Bochum, Germany Fax: +49 (0)234 – 32 14378; E-Mail: [email protected] Table of contents I. Experimental Section a) Materials 2 b) Instrumentation and methods 2 c) Peptide Nucleic Acid synthesis 2 d) Synthesis, characterisation and NMR spectra of Fmoc-1-OtBu, Fmoc-1-OH, Fmoc-2-OtBu and 3 3 e) Characterisation of PNA1-4 10 f) Synthesis and characterisation of Fc-PNA1-3 and Fc2-PNA4 10 II. MALDI-TOF Spectra a) Figure 5: MALDI-TOF mass spectrum of Fc-PNA1 11 b) Figure 6: MALDI-TOF mass spectrum of Fc-PNA2 12 c) Figure 7: MALDI-TOF mass spectrum of Fc-PNA3 12 d) Figure 8: MALDI-TOF mass spectrum of Fc2-PNA4 13 III. References 13 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 2 I. Experimental Section a) Materials. All chemicals were of reagent grade quality or better, obtained from commercial suppliers and used without further purification. Solvents were used as received or dried over 4 Å molecular sieves. b) Instrumentation and methods. 1H and 13C NMR spectra were recorded in deuterated solvents on a Bruker DRX 400 spectrometer at 30°C. The chemical shifts, δ, are reported in ppm (parts per million).