Diptera: Chironomidae) in the Alaskan Arctic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity. -
Download The
AN ECOLOGICAL STUDY OF SOME OF THE CHIRONOMIDAE INHABITING A SERIES OF SALINE LAKES IN CENTRAL BRITISH COLUMBIA WITH SPECIAL REFERENCE TO CHIRONOMUS TENTANS FABRICIUS by Robert Alexander Cannings BSc. Hons., University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Zoology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1973 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada Date ii ABSTRACT This thesis is concerned with a study of the Chironomidae occuring in a saline lake series in central British Columbia. It describes the ecological distribution of species, their abundance, phenology and interaction, with particular attention being paid to Chironomus tentans. Emphasis is placed on the species of Chironomus that coexist in these lakes and a further analysis is made of the chromo• some inversion frequencies in C. tentans. Of the thirty-four species represented by identifiable adults in the study, eleven species have not been previously reported in British Columbia, five are new records for Canada and seven species are new to science. -
Marine Midge Telmatogeton Japonicus Tokunaga (Diptera: Chironomidae) Exploiting Brackish Water in Finland
Aquatic Invasions (2009) Volume 4, Issue 2: 405-408 DOI 10.3391/ai.2009.4.2.20 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article Short communication Marine midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) exploiting brackish water in Finland Janne Raunio1*, Lauri Paasivirta2 and Yngve Brodin3 1Janne Raunio, Water and Environment Association for the River Kymi, Tapiontie 2 C, FIN-45160 Kouvola, Finland E-mail: [email protected] 2Lauri Paasivirta, Ruuhikoskenkatu 17 B 5, FIN-24240 Salo, Finland E-mail: [email protected] 3Yngve Brodin, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden E-mail: [email protected] *Corresponding author Received 20 March 2009; accepted in revised form 26 May 2009; published online 3 June 2009 Abstract Pupal exuviae of marine intertidal midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) were found in September 2008 from the Gulf of Finland, Baltic Sea. Previous records of the species in the Baltic Sea were from Sweden, Denmark, Germany and Poland. Telmatogeton japonicus is an alien species introduced to Europe from the Pacific Ocean. It probably uses shipping as the vector, since in north-western Europe it has first been detected near large seaports. This was also the case in the Gulf of Finland. Our findings suggests that the species’ distribution extends further northeast in the Baltic Sea than understood before, and that the species is able to establish viable populations into fresh-brackish (salinity < 4 ‰) coastal habitats. Key words: Telmatogeton japonicus, Chironomidae, pupal exuviae, Gulf of Finland Benthic macroinvertabrate communities in the 2005; Raunio 2008) to assess chironomid littoral and sub-littoral zones in the Gulf of community composition in three areas in the Finland (Baltic Sea) are rather poorly known, as Gulf of Finland (Figure 1). -
Chironominae 8.1
CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known. -
Nearctic Chironomidae
Agriculture I*l Canada A catalog of Nearctic Chironomidae A catalog of Catalogue des Nearctic Chironomidae Chironomidae delardgion ndarctique D.R. Oliver and M.E. Dillon D.R. Oliver et M.E. Dillon Biosystematics Research Centre Centre de recherches biosyst6matiques Ottawa, Ontario Ottawa (Ontario) K1A 0C6 K1A 0C6 and et P.S. Cranston P.S. Cranston Commonwealth Scientific and Organisation de la recherche Industrial Research scientifique et industrielle du Organization, Entomology Commonwealth, Entomologie Canberra ACT 2601 Canberra ACT 2601 Australia Australie Research Branch Direction g6n6rale de la recherche Agriculture Canada Agriculture Canada Publication 185718 Publication 185718 1 990 1 990 @Minister of Supply and Services Canada 1990 oMinistre des Approvisionnement et Services Canada 1990 Available in Canada through En vente au Canada par I'entremise de nos Authorized Bookstore Agents agents libraires agr66s et autres and other bmkstores libraires. or by mail from ou par la poste au Canadian Govemnent Publishing Centre Centre d'6dition du gouvemement du Supply and Servies Canada Canada Oltawa, Canada K1A 0S9 Approvisionnements et Seryies Canada Ottawa (Canada) K1A 0S9 Cat No. A43-I85'7ll99O N" de cat A43-785117990 ISBN 0-660-55839-4 ISBN 0-660-55839-4 Price subject to change without notic€ Prix sujet i changemenl sans pr6avis Canadian Cataloguing in Publication Data Donn6ee de catalogage avant publication (Canada) Oliver, D.R. Oliver, D.R. A mtalog of Nearctic Chironomidae A atalog of Nearctic Chironomidae (Publication ; 1857/8) (Publiation ; 18578) Text in English and French- Texle en anglais et en frangais. Includes bibliographiel referenes. Comprend des r6f6rences bibliogr. Issued by Research Branch, Agriculture Canada. -
Using Various Lines of Evidence to Identify Chironomus Species (Diptera: Chironomidae) in Eastern Canadian Lakes
Zootaxa 3741 (4): 401–458 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3741.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D2276A9-5295-4622-BCE8-A7D996A30367 Using various lines of evidence to identify Chironomus species (Diptera: Chironomidae) in eastern Canadian lakes ISABELLE PROULX1, JON MARTIN2, MELISSA CAREW3 & LANDIS HARE1,4 1Institut national de la recherche scientifique – Centre Eau Terre Environnement, 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada. E-mails: [email protected] & [email protected] 2Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia. E-mail: [email protected] 3Centre for Aquatic Pollution Identification and Management, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 401 Introduction . 402 Methods . 403 Results and discussion . 411 Species delimitation and identification . 411 Species descriptions and taxonomic status . 421 Chironomus (Chironomus) ‘tigris’ . 421 Chironomus (Chironomus) staegeri Lundbeck (1898) . 421 Chironomus (Chironomus) frommeri Sublette and Sublette (1971) . 422 Chironomus (Chironomus) cucini Webb (1969) . 423 Chironomus sp. NAII . 423 Chironomus sp. NAIII (possibly C. decumbens (Malloch 1934)). 424 Chironomus sp. NAI (C. anthracinus-group) . 424 Chironomus (Chironomus) anthracinus Zetterstedt (1860) . 425 Chironomus (Chironomus) entis Shobanov (1989) . 425 Chironomus (Chironomus) plumosus Linnaeus (1758) . 426 Chironomus (Chironomus) maturus Johannsen (1908) . 427 Chironomus (Chironomus) decorus-group sp. 2 Butler et al. (1995) . 427 Chironomus (Chironomus) harpi Sublette (in Wülker et al. 1991) . 428 Chironomus (Chironomus) bifurcatus Wuelker, Martin, Kiknadze, Sublette and Michiels (2009) . -
DNA Barcoding
Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae) -
Studies on Ecology of Marine Chironomids in Southwestern Japan INTRODUCTION MATERIALS and METHODS
生物圏科学 Biosphere Sci. 54:13-19 (2015) Studies on ecology of marine chironomids in southwestern Japan 1)* 1) 2) Koichiro KAWAI , Hidetoshi SAITO and Katsuo SUGIMARU 1)Laboratory of Aquatic Ecology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan 2) Research Dept., Fumakira Co. Ltd., 1-11-1, Umehara, Hatsukaichi-shi, Hiroshima 739-0494, Japan Abstract Ecological studies were conducted on marine chironomids in south-western Japan. A total of 20 species was collected. For vertical distribution, only a few species was distributed only at high or middle intertidal zone while many species were distributed only at low zone. For substrate preference, some species were collected only on rocks or in mud while many species were collected only in seaweeds. For geographical distribution, a few species was collected only in the southwestern islands or in the oceanic coast in the Japanese main islands. In contrast, some species were collected in the Seto Inland Sea and the oceanic coast in the main islands, in the oceanic coast in the main islands and the southwestern islands, or in all areas. For seasonal emergence, Dicrotendipes enteromorphae was collected only in summer and autumn, and Semiocladius endocladiae was collected in all seasons. Other species were collected only in autumn and winter, or only in winter and spring. These results suggest that many chironomid species with a variety of lifestyles dwell in intertidal zones and have some important roles in the ecosystems. Key Words: sessile organisms, chironomid, distribution, intertidal zone, seaweed INTRODUCTION Chironomids (Diptera: Chironomidae) are one of the widely distributed insects on the earth (Nihon yusurika kenkyu-kai, 2010). -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
Telmatogeton Torrenticola): Stream Flow and Microhabitat Effects Mark Eric Benbow University of Dayton, [email protected]
University of Dayton eCommons Biology Faculty Publications Department of Biology 2003 Life Cycle of a Torrenticolous Hawaiian Chironomid (Telmatogeton Torrenticola): Stream Flow and Microhabitat Effects Mark Eric Benbow University of Dayton, [email protected] Albert J. Burky University of Dayton, [email protected] C. M. Way Follow this and additional works at: https://ecommons.udayton.edu/bio_fac_pub Part of the Biology Commons eCommons Citation Benbow, Mark Eric; Burky, Albert J.; and Way, C. M., "Life Cycle of a Torrenticolous Hawaiian Chironomid (Telmatogeton Torrenticola): Stream Flow and Microhabitat Effects" (2003). Biology Faculty Publications. 20. https://ecommons.udayton.edu/bio_fac_pub/20 This Article is brought to you for free and open access by the Department of Biology at eCommons. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Ann. Limnol. - Int. J. Lim. 39 (2), 103-114 Life cycle of a torrenticolous Hawaiian chironomid (Telmatogeton torrenticola) : stream flow and microhabitat effects M.E. Benbow1, 3, A.J. Burky1, C.M. Way2 1 Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA. 2 Barry Vittor and Associates, Inc., 8060 Cottage Hill Rd., Mobile, AL 36695, East Lansing, MI, 48824-1115, USA In this study we documented the instar densities and life cycle of Telmatogeton torrenticola Terry (Chironomidae : Telmatogetoninae) from Kinihapai Stream, Maui, Hawaii. Greatest larval densities of this midge are found on substrates of high velocity, shallow flows of cascades, and splash zones of waterfalls, with lower densities in riffles. In the summer of 1994 we compared the effects of two microhabitats (termed optimal and suboptimal) on inter-instar density and relative abundance. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream
The University of Southern Mississippi The Aquila Digital Community Master's Theses Summer 8-2017 Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream Jamaal Bankhead University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Recommended Citation Bankhead, Jamaal, "Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream" (2017). Master's Theses. 308. https://aquila.usm.edu/masters_theses/308 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. BIODIVERSITY AND PHENOLOGY OF THE EPIBENTHIC MACROINVERTEBRATES FAUNA IN A FIRST ORDER MISSISSIPPI STREAM by Jamaal Lashwan Bankhead A Thesis Submitted to the Graduate School, the College of Science and Technology, and the Department of Biological Sciences at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2017 BIODIVERSITY AND PHENOLOGY OF THE EPIBENTHIC MACROINVERTEBRATES FAUNA IN A FIRST ORDER MISSISSIPPI STREAM by Jamaal Lashwan Bankhead August 2017 Approved by: ________________________________________________ Dr. David C. Beckett, Committee Chair Professor, Biological Sciences ________________________________________________ Dr. Kevin Kuehn, Committee