Sex Hormones and Metabolites Last Menstrual Period: 2015-10-12 Ordering Physician: DOB: 1976-01-01 Collection Times: Dr

Total Page:16

File Type:pdf, Size:1020Kb

Sex Hormones and Metabolites Last Menstrual Period: 2015-10-12 Ordering Physician: DOB: 1976-01-01 Collection Times: Dr Accession # 00216506 Female Sample Report 123 A Street Sometown, CA 90266 Sex Hormones and Metabolites Last Menstrual Period: 2015-10-12 Ordering Physician: DOB: 1976-01-01 Collection Times: Dr. Dutch Age: 39 2015-11-10 04:00AM 2015-11-10 06:00AM Gender: Female 2015-11-10 03:00PM 2015-11-10 09:00PM Test Result Units Luteal* Postmenopausal Progesterone Metabolites (Urine) Range Range b-Pregnanediol Below luteal range 196.0 ng/mg 600 - 2000 60-200 a-Pregnanediol Below luteal range 112.0 ng/mg 200 - 740 15-50 Estrogens and Metabolites (Urine) Estrone(E1) Above luteal range 28.2 ng/mg 12 - 26 3.0-7.0 Estradiol(E2) Above luteal range 5.1 ng/mg 1.8 - 4.5 0.2-0.7 Estriol(E3) Above luteal range 22.5 ng/mg 5 - 18 0.6-4.0 2-OH-E1 Below luteal range 4.8 ng/mg 5.1 - 13.1 0.3-2.0 4-OH-E1 Within luteal range 0.8 ng/mg 0 - 1.8 0-0.3 16-OH-E1 Above luteal range 4.7 ng/mg 0.7 - 2.6 0.2-0.6 2-Methoxy-E1 Below luteal range 0.8 ng/mg 2.5 - 6.5 0.3-1.4 2-OH-E2 Low end of luteal range 0.19 ng/mg 0 - 1.2 0-0.3 4-OH-E2 Within luteal range 0.3 ng/mg 0 - 0.5 0-0.1 2-Methoxy-E2 Within luteal range 0.5 ng/mg 0 - 0.7 0-0.4 Total Estrogen High end of range 67.1 ng/mg 35 - 70 4.0-15 Androgens and Metabolites (Urine) DHEA-S Low end of range 26.0 ng/mg 20 - 750 Androsterone Above range 1810.0 ng/mg 200 - 1650 Etiocholanolone Within range 680.0 ng/mg 200 - 1000 Testosterone Within range 7.7 ng/mg 2.3 - 14 5a-DHT Above range 7.2 ng/mg 0 - 6.6 5a-Androstanediol Above range 42.0 ng/mg 12 - 30 5b-Androstanediol Within range 32.0 ng/mg 20 - 75 Epi-Testosterone Within range 8.8 ng/mg 2.3 - 14 *the Luteal Range is the premenopausal range. When patients are taking oral progesterone this range for progesterone metabolites is not luteal and reflects the higher levels expected when patients take oral progesterone. This test is intended to be taken in the luteal phase of the menstrual cycle (days 19-22 of a 28 day cycle) for premenopausal women. The ranges in the table below may be used when samples are taken during the first few days (follicular) of the cycle, during ovulation (days 11-14) or when patients are on oral progesterone. See the following pages for age-dependent ranges for androgen metabolites. Additional Normal Ranges Follicular Ovulatory Oral Pg (100mg) b-Pregnanediol 100-300 100-300 2000-9000 a-Pregnanediol 25-100 25-100 580-3000 Estrone (E1) 4.0-12.0 22-68 N/A Estradiol (E2) 1.0-2.0 4.0-12.0 N/A Precision Analytical (Dawn Huo, Ph.D., Lab Director) Female Sample Report Page 1 of 10 3138 Rivergate Street #301C FINAL REPORT CLIA Lic. #38D2047310 McMinnville, OR 97128 11/25/2020 DutchTest.com Hormone metabolite results from the previous page are presented here as they are found in the steroid cascade. See the Provider Comments for more information on how to read the results. Pregnenolone This result is a e s weighted average n n of two progesterone o e 20 metabolites (below). r g 26 Progesterone is e Postmenopausal o measured indirectly 750 t range r s in urine. d DHEA DHEA-S e Progesterone n 5 g ß α 5 A o r 2.3 14.0 P 7.7 600 196 200 112 2000 740 60-200 15-50 ar b-Pregnanediol a-Pregnanediol Androstenedione Testosterone om at as ar e om 5 a ß α ta 5 se 200 680 1000 200 1810 1650 12 26 1.8 4.5 28 5.1 5.0 22.5 18.0 3.0-7.0 0.2-0.7 0.6-4.0 Etiocholanolone Androsterone CYP3A4 Estrone(E1) Estradiol(E2) Estriol(E3) primary estrogens (E1, E2, E3) C Y P 3 A 5ß preference 5α Preference 4 (androgenic) 5α-Reductase Activity s n 0.7 4.7 2.6 e 5α-metabolism makes androgens more potent, most g 0.2-0.6 notably 5α-DHT is the most potent testosterone metabolite o C 16-OH-E1 Y ) Phase 1 Estrogen Metabolism Ratios r P y 1 a t Age-Dependent Ranges B w 1 s h t Age DHEA-S Age Androsterone a E p 20-39 60-750 20-39 650-1650 e v 40-60 30-350 40-60 360-1000 i t >60 20-150 >60 200-600 c e Patient t 2-OH 4-OH 16-OH o Percentages r 46.4% 8.2% 45.4% p Age Testosterone Age Etiocholanolone ( Expected 60-80% 7.5-11% 13-30% 20-39 4-14 20-39 450-1000 1 40-60 3-8 40-60 300-800 A 1.8 Percentages (2-OH) (4-OH) (16-OH) 1 0.8 >60 2.3-6.3 >60 200-500 P Y 0.0-0.3 C 0.04-OH-E1 Glutathione detox Low High COMT QUINONE 2.5 0.8 6.5 5.1 4.8 13.1 (reactive) methylation 0.3-1.4 0.3-2.0 Methylation-activity 2-Methoxy-E1 2-OH-E1 2-Methoxy/2-OH Methylation detox 4-OH-E1 If not detoxified, 4-OH-E1 can bind to and damage DNA Precision Analytical (Dawn Huo, Ph.D., Lab Director) Female Sample Report Page 2 of 10 3138 Rivergate Street #301C FINAL REPORT CLIA Lic. #38D2047310 McMinnville, OR 97128 11/25/2020 DutchTest.com Clinical Support Overview Thank you for choosing DUTCH for your functional endocrinology testing needs! We know you have many options to choose from when it comes to functional endocrinology evaluation, and we strive to offer the best value, the most up-to-date testing parameters and reference ranges, and the greatest clinical support to ensure the most accurate results. Please take a moment to read through the Clinical Support Overview below. These comments are specific to the patient’s lab results. They detail the most recent research pertaining to the hormone metabolites, treatment considerations, and follow-up recommendations. These comments are intended for educational purposes only. Specific treatment should be managed by a healthcare provider. As an ordering provider, we encourage you to schedule a complimentary clinical consult with one of our expert DUTCH clinicians. Please schedule via our online scheduler, email [email protected] or call at 503.687.2050 to schedule a 15-minute or 30-minute consultation. Precision Analytical (Dawn Huo, Ph.D., Lab Director) Female Sample Report Page 3 of 10 3138 Rivergate Street #301C FINAL REPORT CLIA Lic. #38D2047310 McMinnville, OR 97128 11/25/2020 DutchTest.com How to read the DUTCH report This report is not intended to treat, cure or diagnose any specific diseases. The graphic dutch dials in this report are intended for quick and easy evaluation of which hormones are out of range. Results below the left star are shaded yellow and are below range (left). Results between the stars and shaded green are within the reference range (middle). Results beyond the second star and shaded red are above the reference range (right). Some of these hormones also change with age, and the age-dependent ranges provided should also be considered. For female reproductive hormones, a purple band is present on the dutch dials. This band represents the expected levels (reference range) for postmenopausal (or non-cycling) women. In a few places on the graphical pages, you will see fan-style gauges. For sex hormones, you will see one for the balance between 5a/5b metabolism as well as methylation. For adrenal hormones, you will see one to represent the balance between cortisol and cortisone metabolites. These indexes simply look at the ratio of hormones for a preference. An average or "normal" ratio between the two metabolites (or groups of metabolites) will give a result in the middle (as shown here). If the ratio between the metabolites measured is "low" the gauge will lean to the left and similarly to the right if the ratio is higher than normal. Patient or Sample Comments Throughout the provider comments you may find some comments specific to your situation or results. These comments will be found in this section or within another section as appropriate. Comments in other sections that are specific to your case will be in bold. The following video link(s) may help those new to dutch testing to understand the results. If you only have a hardcopy of the results, the video names can be easily found in our video library at www.DutchTest.com. Be aware that our reporting format has recently undergone some cosmetic changes, so the results on the video may look slightly different. These results and videos are NOT intended to diagnose or treat specific disease states. The following video may assist with the interpretation of the Progesterone and Estrogen results: Estrogen tutorial video This video may assist with the interpretation of the Androgen results: Androgen tutorial video The patient reports regular menstrual cycles. The patient reported symptoms of excess estrogen. This can be caused by excess estrogen or progesterone deficiency. Results should be carefully reviewed. We do not report a progesterone to estrogen ratio.
Recommended publications
  • Hormone Testing Summary
    Accession # 00280399 Female Sample Report 123 A Street Sometown , CA 90266 Last Menstrual Period: Ordering Physician: DOB: 1953-10-10 Collection Times: Precision Analytical Age: 63 2016-10-02 06:00AM 2016-10-02 08:00AM Gender: Female 2016-10-01 06:00PM 2016-10-01 10:00PM 2016-10-02 02:00AM Hormone Testing Summary Key (how to read the results): Sex Hormones See Pages 2 and 3 for a thorough breakdown of sex hormone metabolites opausa n l R e a m n e g 1.8 4.5 6.0 2.3 14.0 r 5.1 2.8 1.5 P e patient low limit high limit 20.0 result 0.2-0.7 0.3-2.0 Postmenopausal range Estradiol(E2) Progesterone Testosterone (Serum Equivalent, ng/mL) Progesterone Serum Equivalent is a calculated value based on urine pregnanediol. Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones Total DHEA Production 300 500 3000 Age Range 2516 Daily Free Cortisol Pattern 20-39 1300-3000 240 40-60 750-2000 (ng/mg) >60 500-1200 Total DHEA Production (DHEAS + Etiocholanolone + Androsterone) 180 High Range Limit 120Cortisol 80 52 2750 5930 60 230 6500 Patient Values Low Range Limit 24hr Free Cortisol cortisol Metabolized Cortisol (THF+THE) 0 (A+B+C+D) metabolism (Total Cortisol Production) Waking (A) Morning (B) Afternoon (C) Night (D) Free cortisol best reflects tissue levels. Metabolized cortisol best reflects total cortisol production. The following videos (which can also be found on the website under the listed names along with others) may aid your understanding: DUTCH Complete Overview Estrogen Tutorial Female Androgen Tutorial Cortisol Tutorial PLEASE BE SURE TO READ BELOW FOR A NY SPECIFIC LA B COMMENTS.
    [Show full text]
  • The Steroid Metabolome in Men with Mood and Anxiety Disorders
    Physiol. Res. 64 (Suppl. 2): S275-S282, 2015 https://doi.org/10.33549/physiolres.933067 The Steroid Metabolome in Men With Mood and Anxiety Disorders M. DUŠKOVÁ1, M. HILL1, M. BIČÍKOVÁ1, M. ŠRÁMKOVÁ1, D. ŘÍPOVÁ2, P. MOHR2, L. STÁRKA1 1Institute of Endocrinology, Prague, Czech Republic, 2National Institute of Mental Health, Klecany, Czech Republic Received May 5, 2015 Accepted May 20, 2015 Summary many other hormones and various factors have been The mood and behavior of individuals result from an orchestra of identified as modulators of mood and behavior in such many factors. Among them steroids play an important role; disorders. Recent studies have described the role of brain- however, only several common hormones have been investigated derived neurotrophic factor (BDNF) (Pluchino et al. in this respect. It has been demonstrated that some steroid 2013, Numakawa et al. 2014), thyroid hormones (Duntas metabolites long considered merely the products of steroid and Mails 2013), inflammation (Halaris 2013), immunity hormone metabolism in fact possess considerable activity in the (Pitychoutis and Papadopoulou-Daifoti 2010), melatonin CNS. For this reason we studied the steroid metabolome (Boyce and Hopwood 2013), oxytocin and vasopressin including 50 analytes in 20 men with depression, 20 men with (Scantamburlo et al. 2009, Matsuzaki et al. 2012), the anxiety and 30 healthy controls. Significant differences were renin-angiotensin-aldosterone system (Franklin et al. found not only between controls and men with either depression 2012, Murck et al. 2012), the cannabinoid system or anxiety, but also between men with depression and anxiety. (Martykánová 2010, Gorzalka and Hill 2011, Smaga et Particularly striking were those steroids until now not generally al.
    [Show full text]
  • Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors
    1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed.
    [Show full text]
  • Steroid Profiling in Urine of Intact Glucuronidated and Sulfated
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Journal of Chromatography A 1624 (2020) 461231 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Steroid profiling in urine of intact glucuronidated and sulfated steroids using liquid chromatography-mass spectrometry ∗ Laurie De Wilde , Kris Roels, Pieter Van Renterghem, Peter Van Eenoo, Koen Deventer 1 Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department Diagnostic Sciences, Technologiepark 30B, B-9052 Zwijnaarde, Belgium a r t i c l e i n f o a b s t r a c t Article history: Detection of endogenous anabolic androgenic steroids (EAAS) misuse is a major challenge in doping con- Received 26 November 2019 trol analysis. Currently, a number of endogenous steroids, which constitute the steroid profile, are quanti- Revised 6 May 2020 fied using gas chromatography (GC). With this methodology, only the sum of the free and glucuronidated Accepted 10 May 2020 steroids is measured together. A dilute-and-shoot LC-MS method, which is compliant with the quality Available online 23 May 2020 requirements for measuring EAAS established by the World Anti-Doping Agency (WADA), was devel- Keywords: oped and validated containing glucuronidated and sulfated steroids in order to gain some extra infor- Doping mation and to expand the existing steroid profile. The developed method is, to the best of our knowl- Urine edge, the first method to combine both steroid glucuronides and sulfates, which is compliant with the Steroid profile quality standards of the technical document on EAAS, established by WADA.
    [Show full text]
  • Antinociceptive Activity of a Neurosteroid Tetrahydrodeoxycorticosterone (5Cx-Pregnan-3Cx-21-Diol-20-One) and Its Possible Mechanism(S) of Action
    Indian Journal of Experimental Biology Vol. 39, December 2001, pp. 1299-1301 Antinociceptive activity of a neurosteroid tetrahydrodeoxycorticosterone (5cx-pregnan-3cx-21-diol-20-one) and its possible mechanism(s) of action P K Mediratta, M Gambhir, K K Sharma & M Ray Department of Pharmacology, University College of Medical Sciences and GTB Hospital, Delhi II 0095, India Fax: 91-11-2299495; E-mail: [email protected]/[email protected] Received 9 Apri/2001; revised 2 July 2001 The present study investigates the effects of a neurosteroid tetrahydrodeoxycorticosterone (5a-pregnan-3a-21-diol-20- one) in two experimental models of pain sensitivity in mice. Tetrahydrodeoxycorticosterone (2.5, 5 mg!kg, ip) dose dependently decreased the licking response in formalin test and increased the tail flick latency (TFL) in tail flick test. Bicuculline (2 mg/kg, ip), a GABAA receptor antagonist blocked the antinociceptive effect of tetrahydrodeoxy­ corticosterone in TFL test but failed to modulate licking response in formalin test. Naloxone (I mglkg, ip), an opioid antagonist effectively attenuated the analgesic effect of tetrahydrodeoxycorticosterone in both the models. Tetrahydrodeoxycorticosterone pretreatment potentiated the anti nociceptive response of morphine, an opioid compound and nimodipine, a calcium channel blocker in formalin as well as TFL test. Thus, tetrahydrodeoxycorticosterone exerts an analgesic effect, which may be mediated by modulating GABA-ergic and/or opioid-ergic mechanisms and voltage-gated calcium channels. It is now well known that some of the steroids like Allopregnanolone has been shown to exhibit progesterone can act on central nervous system (CNS) antinociceptive effect against an aversive thermal to produce a number of endocrine and behavioral stimulus 10 and in a rat mechanical visceral pain 11 effects.
    [Show full text]
  • Test Report Comprehensive Hormone Insights™
    698814 COMPREHENSIVE HORMONE INSIGHTS™ TEST REPORT Dr. Maximus, N.D. E: [email protected] Date of Collection: P: 403-241-4500 Time of Collection: F: 403-241-4501 Date of Receipt: www.rmalab.com Reported On: CHI Accession: 698814 Healthcare Professional Patient Age: Dr. Maximus, N.D. Date of Birth: Gender: Male F: Relevant Medications Biometrics Curcumin Height (in) : 73 Weight (lb) : 180 BMI : 24 Waist (in) : 35 Hip (in) : 41 CHI Accession: 698814 SUMMARY HMUS01 How to read the graphs LEGEND: 50 66 Sex Steroid Hormones 50 66 Middle third of 33 33 84 reference population Hormone Start of 83 100 80 100 highest 16 Percentile Precursors 16 Percentile third of Sum of Androgens Sum of Estrogens 50 66 reference 0 0 population (T, DHT, α+β androstanediol) Listed in Interp Guide 33 84 End of 100 16 lowest Percentile00 50 66 50 66 third of 33 33 84 reference 0 population Patient’s percentile rank 81 100 95 100 compared to reference 16 Percentile 16 Percentile population (see summary) DHEA + Metabolites Sum of Progesterone Metabolites 0 (DHEA + A + E) 0 α+β Pregnanediol Cortisol Melatonin Oxidative Stress Free Cortisol Profile (ng/mg) 100 50 66 50 66 33 84 33 84 80 64 100 0 100 16 Percentile 16 Percentile 60 6-sulfatoxy 8-Hydroxy-2- 0 Melatonin 0 deoxyguanosine 40 (Overnight) (Overnight) 20 6-sulfatoxymelatonin provides 8-hydroxy-2-deoxyguanosine is Cortisol/Creatinine (ng/mg) insight into melatonin levels. a marker of oxidative stress 0 Morning Dinner Bedtime A B C 50 66 Free cortisol Cortisol Metabolites 33 84 profile is used to provides a general Testosterone Cortisol assess diurnal assessment of 16 100 cortisol rhythm adrenal cortisol 16 Percentile Cortisol production Cortisol Metabolites 0 (α+β THF + THE) Testosterone Cortisol/Testosterone provides insight into relative catabolic (cortisol) and anabolic (testosterone) states.
    [Show full text]
  • Increased and Mistimed Sex Hormone Production in Night Shift Workers
    Published OnlineFirst March 3, 2015; DOI: 10.1158/1055-9965.EPI-14-1271 Research Article Cancer Epidemiology, Biomarkers Increased and Mistimed Sex Hormone Production & Prevention in Night Shift Workers Kyriaki Papantoniou1,2,3,4, Oscar J. Pozo2, Ana Espinosa1,2,3,4, Josep Marcos2,3, Gemma Castano-Vinyals~ 1,2,3,4, Xavier Basagana~ 1,2,3,4, Elena Juanola Pages 5, Joan Mirabent6,7, Jordi Martín8, Patricia Such Faro9, Amparo Gasco Aparici10, Benita Middleton11, Debra J. Skene11, and Manolis Kogevinas1,2,3,4,12 Abstract Background: Night shift work has been associated with Results: Night workers had higher levels of total progestagens an increased risk for breast and prostate cancer. The effect [geometric mean ratio (GMR) 1.65; 95% confidence intervals of circadian disruption on sex steroid production is a pos- (CI), 1.17–2.32] and androgens (GMR: 1.44; 95% CI, 1.03–2.00), sible underlying mechanism, underinvestigated in hum- compared with day workers, after adjusting for potential con- ans. We have assessed daily rhythms of sex hormones founders. The increased sex hormone levels among night and melatonin in night and day shift workers of both shift workers were not related to the observed suppression of sexes. 6-sulfatoxymelatonin. Peak time of androgens was significantly Methods: We recruited 75 night and 42 day workers, ages later among night workers, compared with day workers (testos- 22 to 64 years, in different working settings. Participants terone: 12:14 hours; 10:06-14:48 vs. 08:35 hours; 06:52-10:46). collected urine samples from all voids over 24 hours on a Conclusions: We found increased levels of progestagens and working day.
    [Show full text]
  • Studies on Steroid Fever II. Pyrogenic and Anti-Pyrogenic Activity in Vitro of Some Endogenous Steroids of Man
    Studies on steroid fever II. Pyrogenic and anti-pyrogenic activity in vitro of some endogenous steroids of man G. M. Dillard, Phyllis Bodel J Clin Invest. 1970;49(12):2418-2426. https://doi.org/10.1172/JCI106461. Research Article The pyrogenic properties of some C-19 and C-21 steroids were examined by in vitro incubation of human blood leukocytes with serum-buffer solutions of the steroids and injection of the 18-hr supernatants into rabbits. In previous studies this method demonstrated release of leukocyte endogenous pyrogen by etiocholanolone. With two exceptions, steroids known to cause fever in man, such as 11β-OH etiocholanolone and 3α-hydroxy-5β-pregnane-20-one were also pyrogenic in vitro. All steroids tested which are nonpyrogenic in man, such as androsterone, 3β-OH etiocholanolone, and 3α, 17α-dihydroxy-5β-pregnan-20-one were also nonpyrogenic in vitro. Solubility in aqueous solution did not correlate with pyrogenic capacity. Inhibition of pyrogen release from human leukocytes in vitro by hydrocortisone and estradiol was demonstrated. Hydrocortisone-treated leukocytes released less pyrogen than did normal leukocytes when stimulated either by etiocholanolone or by phagocytosis of heat-killed staphylococci. On the other hand, estradiol-treated blood leukocytes and mononuclear cells showed significant suppression of pyrogen release when phagocytosis, but not etiocholanolone, was used as the stimulus. When blood cells were incubated with progesterone, greater than normal amounts of pyrogen were released following phagocytosis, and the inhibiting effect of estradiol could be partially reversed. Neither estradiol nor hydrocortisone appeared to act on rabbit leukocytes. These studies indicate that a variety of naturally-occurring steroids may alter pyrogen release from leukocytes.
    [Show full text]
  • Normal Steroid Levels in Racehorses (Print) Page 1 of 2
    The Horse | Normal Steroid Levels in Racehorses (print) Page 1 of 2 Normal Steroid Levels in Racehorses by: Christy West February 28 2010 Article # 15889 Steroid usage in racehorses has received a good deal of attention in the media, perhaps reaching a peak during the 2009 Triple Crown season when Big Brown won the Kentucky Derby and Preakness on the legally administered steroid stanozolol, then flopped in the Belmont without it. While no one could ever prove the steroid helped the horse win or that his loss was associated with being steroid-free, the situation added significant fuel to the fire of medication regulation in racehorses. One of the tough aspects of regulating substances that are naturally produced in the horse's body, such as many steroids, is that before you can decide how high a level of the substance constitutes an administered medication or abuse, you have to find out how much horses produce normally. At the 2009 American Association of Equine Practitioners (AAEP) Convention held Dec. 5-9 in Las Vegas, Nev., one presenter discussed a study that sought to answer that question for anabolic androgenic steroids (hormones that stimulate masculine physical characteristics) in young Thoroughbreds. Currently there are four anabolic androgenic steroids commonly used therapeutically in racehorses: Stanozolol, nandrolone, testosterone, and boldenone, said presenter Benjamin C. Moeller, BS, a graduate student at the K.L. Maddy Equine Analytical Chemistry Laboratory at the University of California, Davis. In collaboration with veterinarians at Rood & Riddle Equine Hospital and Hagyard Equine Medical Institute (both in Lexington, Ky.), and Craig Van Balen (private practitioner in Lexington), 142 un-medicated Thoroughbred colts and 62 fillies in training at Central Kentucky farms, from five to 24 months of age, were blood tested monthly for 13 months.
    [Show full text]
  • Neurosteroid Metabolism in the Human Brain
    European Journal of Endocrinology (2001) 145 669±679 ISSN 0804-4643 REVIEW Neurosteroid metabolism in the human brain Birgit Stoffel-Wagner Department of Clinical Biochemistry, University of Bonn, 53127 Bonn, Germany (Correspondence should be addressed to Birgit Stoffel-Wagner, Institut fuÈr Klinische Biochemie, Universitaet Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; Email: [email protected]) Abstract This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now ®rmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The functions attributed to speci®c neurosteroids include modulation of g-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The ®rst clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and
    [Show full text]
  • Genetics of Androgen Disposition
    From the Department of Laboratory Medicine Division of Clinical Pharmacology Karolinska Institutet, Stockholm, Sweden GENETICS OF ANDROGEN DISPOSITION - Implications for Doping Tests Jenny Jakobsson Schulze Stockholm 2007 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. © Jenny Jakobsson Schulze, 2007 ISBN 978-91-7357-397-9 Printed by 2007 Gårdsvägen 4, 169 70 Solna One must sit down before truth without preconception, like a little child, and follow where the facts lead- or one will learn nothing. Thomas Huxley (1825-1895) To Joe and Dante ABSTRACT Anabolic androgenic steroids (AAS) are derivatives of testosterone. Doping with AAS is a severe challenge to the vision, moral and ethics in sports and has also become an increasing problem in society. Testosterone abuse is conventionally assessed by the urinary testosterone glucuronide/ epitestosterone glucuronide (T/E) ratio, levels above 4.0 being considered suspicious. However, there is a large inter-individual variation in testosterone glucuronide and epitestosterone glucuronide excretion, which challenges the accuracy of the test. There are reasons to believe that genetic variation is the single most important cause of variation in disposition of many androgenic compounds. Twin studies in men have demonstrated heritability estimates of 85% and 96% for production rates of testosterone and dihydrotestosterone, respectively. The primary aim of this thesis was to investigate the contribution of genetic components to inter-individual variation in androgen disposition. We found that a deletion polymorphism in the UGT2B17 gene was strongly associated with the urinary testosterone glucuronide levels. All individuals homozygous for the deletion had negligible amounts of urinary testosterone glucuronide.
    [Show full text]
  • Site-Specific Effects of Neurosteroids on GABA(A) Receptor Activation and Desensitization
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2020 Site-specific effects of neurosteroids on GABA(A) receptor activation and desensitization Yusuke Sugasawa Washington University School of Medicine in St. Louis Wayland W.L. Cheng Washington University School of Medicine in St. Louis John R. Bracamontes Washington University School of Medicine in St. Louis Zi-Wei Chen Washington University School of Medicine in St. Louis Lei Wang Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Sugasawa, Yusuke; Cheng, Wayland W.L.; Bracamontes, John R.; Chen, Zi-Wei; Wang, Lei; Germann, Allison L.; Pierce, Spencer R.; Senneff, Thomas C.; Krishnan, Kathiresan; Reichert, David E.; Covey, Douglas F.; Akk, Gustav; and Evers, Alex S., ,"Site-specific effects of neurosteroids on GABA(A) receptor activation and desensitization." Elife.,. (2020). https://digitalcommons.wustl.edu/open_access_pubs/9682 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Yusuke Sugasawa, Wayland W.L. Cheng, John R. Bracamontes, Zi-Wei Chen, Lei Wang, Allison L. Germann, Spencer R. Pierce, Thomas C. Senneff, Kathiresan Krishnan, David E. Reichert, Douglas F. Covey,
    [Show full text]