Rio Yaqui Watershed, Northwestern Mexico: Use and Management 1

Total Page:16

File Type:pdf, Size:1020Kb

Rio Yaqui Watershed, Northwestern Mexico: Use and Management 1 This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Rio Yaqui Watershed, Northwestern Mexico: Use and Management 1 Luis Bojorquez2, Raymundo Aguirre3 and Alfredo Ortega4 Abstract.-- This paper describes the uses and communi­ ty types of the Rio Yaqui Watershed in Sonora Mexico. The management problems are interrelated but there are no stud­ ies of sufficient regional scope to integrate the uses of the area. To cope with this, research activities associated with management have to be multidisciplinary. INTRODUCTION The use of an ecosystems often influ~ ences other natural systems (Ffolliott The State of Sonora, Mexico, is loca­ 1980). Riparian ecosystems utilization ted on the northwestern corner of The impact, and is impacted by, other uses of Mexican Republic. It is limited by the their basin. For this reason a study was Sierra Madre Occidental, on the east, by made to describe the vegetational community the State of Arizona on the north, by the types that occur in the Rio Yaqui Watershed state of Sinaloa, on the south, and by the and their sometimes conflicting usage. Gulf of California, on the east. Agriculture, ranching, mining, fores­ Sonora presents two main landforms: try, and recreation are the principal land uses at present (SAHOP 1980) and larger im­ Northwestern Coastal Plain.- It ex­ pacts and conflicts can be expected in the tenrls from the outlet of the Colorado future. Basic research is needed to recon­ River to the south along the coast. and cile apparently antagonistic requirements of individual components of some multipur­ Sierra Madre Occidental.- It is ad­ pose combinations (King 1980). jacent and parallel to the coastal plain. It is the longest and most continuous moun­ tain chain of Mexico ranging from the DESCRIPTION OF THE WATERSHED eastern border of Sonora and Arizona to central Mexico. The maximum altitudes in General Characteristics its Sonoran range arE: of more than 2, 800 m above sea level (a. s. l) (DETENAL 1982a). Rio Yaqui Watershed occupies an area of approximately 73,000 km2 (30/. of the The Sierra Madre Occidental has a state). It originates in the west aspect large influence on the hydrology of the of the Sierra M~dre Occidental and is area since is the zone of recharge of the adjacent to the Rio Sonora Watershed in Northwestern Coastal Plain (DETENAL 1981a) its west limit. The north limit lies in where the most important developments are Arizona, U.S. A., approximately 40 km north­ located. Rio Yaqui is the principal river east of Douglas. The direction of the of Sonora. It originates in the Sierra long axis is northeast from the outlet. Madre Occidental and discharges into the Though the area includes two states, 95/. Gulf of California. of the basin is in Sonora (SARH 1979). The complex drainage pattern in the lPaper presented at the Riparian Eco­ mountains is gradually reduced when the systems Management Conference. University Yaqui approaches to the coastal plain of Arizona, Tucson, Az. April 16-18, (DETENAL 198la), where several arroyos 198 5. join the main flow. The principal river 2Luis A. Bojorquez-Tapia is Graduate of the watershed is the Yaqui, which has Student of Watershed Management, Univer­ a mean annual runoff of about 2. 9 billion sity of Arizona, Tucson, Az. m3 (SARH 1979) The principal tributaries 3Raymundo Aguirre-deluna is Graduate are the Bavispe, the Moc.tezuma, and the Research Assistant Range Management Depar­ Sahuaripa. The Bavispe drains in to La tment, University of Arizona, Tucson Az. Angostura Reservoir and continues running 4Alfredo Ortega-Rubio is Researcher south, forming the Yaqui at the junction in Institute de Ecologia, A. C. Mexico, D. F. with the Sahuaripa river. The Moctezuma 475 flows southward on the western limit of most xeric aspects while P. ayacahuite the basin and is connected to the Yaqui prevails on more mesic slopes of canyons. by the Plutarco Elias Calles Dam, better known as El Novillo. From here, the Yaqui The similar ecological requirements of runs out southward to the Alvaro Obregon pines and oaks, their entangled successio­ Reservoir, which supplies water for the nal relationships, and the diversity of irrigation of 2, 250 km2 of agricultural microhabitats produce a mosaic of forest land. Fourteen drains deliver the water types hard to delineate (Rzedowski 1978). used by agriculture to Tobari Bay Oak forest components often can be found (Bojorquez 1983). above the lower limit of the pine forest specially in xeric aspects so it is possi­ Ciudad Obregon, Agua Prieta, and ble to recognize the following Nacozari are the most important cities in associations: the watershed. Bosgue de Pino-Encino.- The pine-oak Climate association is formed by t~e same species of the pine and oak forests but with do­ The anticyclonic high pressure system minance of pines. It is found in the gives to Sonora its arid and semi-arid lower, more xeric areas of the pine forest. characteristics. The general trend is a gradient of aridity from the coast to high­ Bosgue de Encino-Pino.- This commu­ er elevations. Thus, for the watershed: nity establishes in disturbed zones in mean annual precipitation is about 559. 8 both the pine and the pine-oak forests. mm, from which 92. 07. is lost by evapotran­ Quercus and Pinus are the two main genera, spiration, 0. 47. infiltrates, and 7. 67. but oak is more abundant. The following leaves as runoff (DETENAL 1983b). Total species are common: P. cembroides, L annual precipitation ranges from 100-200 mm arizonica, P. emoryi, Cupressus arizonica, around the outlet to 1, 000-1, 200 mm in the and Juniperus deppeana. Sierra Madre (DETENAL 1981c). Mean annual temperature ranges from 24-26°C in areas Bosgue de Encino.- Deciduous oaks close to the ocean to 6-8°C in the highest dominate between 1000 and 2000 m a. s. l. elevations (DETENAL 1981d). in slopes and plateaus. The most abundant species is Q. chihuahuensis, although is However, the rugged topography in the displaced locally by Q. tuberculata and mountains causes combinations of climate Q. albocinta in more mesic habitats. types within this gradient (Rzedowski Other important species are: Q. fulva, 1978). According to the classification by Q. sipuraca, Q. santaclarensis, L Koeppen, the Northwestern Coastal Plain has hypoleuca, and Q. duranguensis. Bunchy subdivisions of climate types BS and Bw grasses are also important. while the Sierra Madre Occidental has sub­ divisions of climates BS and Cw (DETENAL Selva Baja Caducifolia 198la). This deciduous forest is typical of subhumid hot climates. The majority of the VEGETATIONAL COMMUNITIES individuals (757.-1007.) lose their leaves for long periods (6-8 months). The domi­ The variety of microenvironmental nant trees lack of spines and the highest conditions in the watershed causes a high are 15 m tall. It is widely distributed on overlapping of communities distributions. hillsides with good drainage between 300 to On the other hand, present knowledge of the 1200 m a. s. l. Common genera of this com­ vegetation in Mexico does not allow com­ munity are Ceiba, Bursera, Conzattia, parisons between community types in great Ipomea, Lysiloma, and Ficus. detail (Rzedowski 1978). In the present paper, the classification by DETENAL Bosque de Galeria (1981a) was followed. The watershed pre­ sents the following vegetational types: The riparian forest exists in areas where soil moisture is sufficiently high Forest to support a different community from the drier surroundings (Johnson and Carothers Bosque de Pino 1982). Populus, Platanus, and Taxodium are the most widely distributed along pere­ The pine forest includes the follo­ nnial streams upland. Prosopis and Acacia wing species distributed in the Sierra are present in arroyos (Rzedowski 1978). Madre Occidental between 1500 and 3000 m a. s. l.: Pinus reflexa, P. arizonica, P. Scrub lumholtzi, P. ayacahuite, and P. pondero­ ~- Microhabitats are important for the Matorral Desertico Microfilo predominance of a particular species, by example, P. reflexa is dominant on the This desert scrub vegetation type is composed of shrubs with small leaves or 476 folioles. Found on alluvial soils at USES OF THE COMMUNITY TYPES elevations from sea level to 800 m a. s. l., it can be divided in: Forestry Matorral Subinerme.- Thorny plants Pine communities were not exploited (30/.) and plants without spines (70/.) at the level programmed for 1984 (SFF form this vegetational type. Important· 1985). Pinus spp. were the most valuable species are: Fouguieria splendens, Yucca trees in Sonora. Total volume obtained in ~. C o n d a 1 i a s p. , Mi mo s a s p. , an d P r o s o p i s 1984 was about 43,300 m3. Sawlogs was the glandulosa. main product, but others were cellulose, posts, and c.rossties. Populus spp. saw­ Matorral Espinoso.- The proportion logs were also obtained but on a muc.h of thorny shrubs in this community is lower scale. higher than 707.. Prosopis spp., Acacia ~. C o n d a 1 i a s p p. , At r i p 1 e x s p p. , a n d On the contrary, scrub communities Fouguieria spp. are common. were overexploited. Th~ ~otal for the state was 113,300 m3 or 175/. the program­ Matorral Subtropical med volume (SFF 1985). Fuelwood and char­ coal were the principal products. Prosopis The subtropical scrub is typical in ~ and Olneya tesota were the most utili­ areas of ecological transition between zed for that purpose (SAHOP 1980). relatively humid conditions and more xeric scrubs. The majority of the plants lose Major problems of the forestry their leaves for long periods. This commu­ industry in Sonora are lack of product nity is denser with clearings occupied by classification systems and modern grasses in places of high human activity.
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Selecting Desert Shade Trees
    Your one-stop guide to a variety of shade trees that grow well in the dry Arizona ARIZONA DESERT SHADE TREES Sonoran Desert environment. Frost Potential Growth Water Possible Tree Benefits Height Shape Spread Toler- Planting Rate Usage Problems Type ance Areas orked, P=Pyramidal, N=Narrow, Mature Specimens at Desert Botanical Garden? Thorny: V=Very, M=Moderate, S=Slightly, N=No Thorns Hardiness: Degrees Fahrenheit S=Semi-Hardy, H=Hardy E=Evergreen, S=Semi- deciduous, D=Deciduous D=Desert T=Turf, Native Arizona Shade Tree Beneficial to Native Wildlife Heaviest Bloom Season: SP=Spring, SU=Summer, F=Fall, W=Winter Flower Color: C=Cream, W=White, R=Red Prp=Purple, P=Pink, Y=Yellow, Okay to Grow Near Electric Lines? Y = Yes, N = No S=<25', M=25-40', L=>40' S-Spreading, M=Multi/Trunked/Low- f C=Conical S=<25', M=25-40', L=>40' S=Slow, M=Medium, F=Fast L=Low, M=Medium Rot, Root T=Texas Chlorosis, I=Iron D=Other Diseases, P=Pests, L=Litter, W=Wind Damage, In=Invasive Roots Aleppo Pine N/A N L S LMMD,P N H E T Pinus halepensis Blue Palo Verde SP Y N M S/M M ML L MHD D Parkinsonia florida Cascalote WY Y SS S F L P,L V 28/S S T/D Parkinsonia caesalpinia Chinese Elm SU/F N LS L M M T,L N HS T Ulmus parvifolia Chinese Pistache SU N LS L M M T,L N HD T Pistacia chinensis Coolibah SP P N MS M MMI,L,W,P N HE T Eucalyptus microtheca Coral Gum N/A R,Y Y SS S M L T,D,P,L N HE D Eucalyptus torquata Desert Fern SP C N S/M S S/M ML L NSE D Lysiloma thornberi Desert Willow SP/SU P/Prp Y S N/M S ML L NHD D Chilopsis linearis Eldarica Pine N/A N LS L FM P NHE T Pinus eldarica Foothills Palo Verde SP C Y S S/M S ML L SHD D Parkinsonia microphylla Hybrid Mesquite SU C N MS M FL L V H S T/D Prosopis spp.
    [Show full text]
  • Southwestern Trees
    I SOUTHWESTERN TREES A Guide to the Native Species of New Mexico and Arizona Agriculture Handbook No. 9 UNITED STATES DEPARTMENT OF AGRICULTURE Forest Service SOUTHWESTERN TREES A Guide to the Native Species of New Mexico and Arizona By ELBERT L. LITTLE, JR., Forester (Dendrology) FOREST SERVICE Agriculture Handbook No. 9 U. S. DEPARTMENT OF AGRICULTURE DECEMBER 1950 Reviewed and approved for reprinting August 1968 For sale by the Superintendent oí Documents, U.S. Government Printing Office Washington, D.C. 20402 - CONTENTS Page Page Introduction . 1 Spurge family (Euphorbiaceae) . 76 Vegetation of New Mexico and Cashew family (Anacardiaceae) . 78 Arizona 4 Bittersweet family (Celastraceae) 79 Forests of New Mexico and Arizona 9 Maple family (Aceraceae) .... 80 How to use this handbook 10 Soapberry family (Sapindaceae) . 82 Pine family (Pinaceae) .-..,.. 10 Buckthorn family (Rhamnaceae) . 83 Palm family (Palmae) 24 Sterculla family (Sterculiaceae) . 86 Lily family (Liliaceae) 26 Tamarisk family (Tamaricaceae) . 86 Willow family (Salicaceae) .... 31 Allthorn family (Koeberliniaceae) 88 Walnut family (Juglandaceae) . 42 Cactus family (Cactaceae) .... 88 Birch family (Betulaceae) .... 44 Dogwood family (Cornaceae) . , 95 Beech family (Fagaceae) .... 46 Heath family (Ericaceae) .... 96 Elm family (Ulmaceae) 53 Sapote family (Sapotaceae) ... 97 Mulberry family (Moraceae) ... 54 Olive family (Oleaceae) 98 Sycamore family (Platanaceae) . 54 Nightshade family (Solanaceae) . 101 Rose family (Rosaceae) 55 Bignonia family (Bignoniaceae) . 102 Legume family (Leguminosae) . 63 Honeysuckle family (Caprifo- liaceae) 103 Rue family (Rutaceae) 73 Selected references 104 Ailanthus family (Simaroubaceae) 74 Index of common and scientific Bur sera family (Burseraceae) . 75 names 106 11 SOUTHWESTERN TREES A Guide to the Native Species of New Mexico and Arizona INTRODUCTION The Southwest, where the low, hot, barren Mexican deserts meet the lofty, cool, forested Rocky Mountains in New Mexico and Ari- zona, has an unsuspected richness of native trees.
    [Show full text]
  • Olneya Tesota A
    Olneya tesota A. Gray Fabaceae - Papilionoideae LOCAL NAMES English (tesota,desert ironwood) BOTANIC DESCRIPTION Olneya tesota is a conspicuous small tree up to 10 m in height, commonly with several trunks. The trunks can attain a diameter up to 60 cm on very old individuals. Young twigs up to 10 or 15 mm thick, green. Bark grey and smooth, fissured and shredding on older trunks. Sharp, paired spines, 3- 11 mm long at nodes. Leaves simple, pinnately compound up to 6-cm long; leaflets 6-20 greyish- green in colour, 7-20 mm long. Ten or fewer pairs of leaflets to 1 cm long; spines at base of leaves, paired, slightly curved, 0.6 cm long, and usually brown-tipped. Foliage evergreen to semi-deciduous. Flowers pink to lavender, papilionaceous; 15 mm long, appearing in short, dense racemes or panicles in late spring. Mature pods dehiscent, several seeded. Seeds 5-6 mm in diameter. The genus Olneya is monospecific and can be easily mistaken for Palo Verde (Cercidium spp.) but has a greyer color and lacks the distinctive yellow flowers in spring. BIOLOGY Flowering is prolific every two in five years, usually late in spring, pods ripen in summer. Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Olneya tesota A. Gray Fabaceae - Papilionoideae ECOLOGY O. tesota is a dominant component of many plant communities. It is usually restricted to dry desert watercourses, sandy and rocky soils of plains, slopes and along dry washes, where storm runoff increases the available moisture. The largest individuals are found in these habitats, often forming woodlands with other desert trees including Cercidium floridum, Prosopis glandulosa var.
    [Show full text]
  • Carnegiea Gigantea) in the Western Sonora
    Association Between Nurse Plants and Saguaros (Carnegiea gigantea) in the Western Sonora C. Hinojo-Hinojo, C. Trujillo-López, O. Calva-Pérez, O. Galaz-García, A. E. Castellanos-Villegas Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Mexico Abstract—The objectives in this work were to determine nurse species associated with the saguaro, as well as the diversity of plant species in the saguaro patch. We also recorded the presence of termites on saguaro green tissues to evaluate their existence and possible causes for their presence. At each site a point-centered quarter transect was used, where the data on the closet saguaros were taken for size and height, percent litter soil coverage, and termite activity, as well as floristic composition, plant species cover, and the dimension of the associated patch of vegetation. Data on 55 saguaros showed the most common nurse species were Larrea tridentata, Olneya tesota, Parkinsonia microphylla, and Ambrosia deltoidea. Twenty-one (21) saguaro individuals were found distributed in different patches where Olneya tesota and Parkinsonia microphylla showed the most species diversity. Termite activity was present in saguaros with little or no litter cover in the soil. This is the first work focusing on the causes for the increase of termite invasion of live saguaro tissues. Introduction Materials and Methods Cacti are a diverse family and include about 2,000 species, which Sampled sites were located in the northwestern region of the are often endemic and unique elements of the arid and semi-arid areas State of Sonora, near Puerto Libertad. We selected three sites that of America (Drezner and Lazarus 2008; Godinez-Alvarez and others had been previously sampled (Castellanos and others 2010b), in 2003; Hunt and others 2006).
    [Show full text]
  • Growth of Legume Tree Species Growing in the Southwestern United States
    Growth of Legume Tree Species Growing in the Southwestern United States Ursula K. Schuch1 and Margaret Norem2 Plant Sciences Department1 and Desert Legume Program2 University of Arizona, Tucson, AZ 85721 Abstract Vegetative shoot growth of eleven legume tree species growing under field conditions in the Southwestern United States in Arizona were monitored over two periods of twelve months. Species included plants native to the Southwestern United States, Mexico, South America, and Australia. Based on shoot extension and branch differentiation species could be grouped into three categories. Fast growing legumes included Acacia farnesiana, A. pendula, Olneya tesota, Parkinsonia floridum, and Prosopis chilensis. Intermediate growth rates were monitored for A. jennerae, A. salicina, and A. visco. Slow growing species in this study included A. stenophylla, P. microphylla, and P. praecox. No buds, flowers, or pods were observed for P. microphylla, O. tesota, and P. chilensis during the study. Of the remaining species those native to the Americas flowered in spring and those native to Australia flowered in fall or winter. Introduction Southwestern landscapes, characterized by a semiarid climate and poor soils, rely on many native and non- native legume species for shade and aesthetic value. Desirable traits of trees for desert landscapes include fast growth, drought tolerance, and resistance to biotic stresses. In addition, cultivated trees are prized for showy flowers, little or no litter, lack of spines, and an upright growth habit (Dimmitt, 1987). Of the 11 species used in this study, six are commonly planted in the northern Sonoran Desert at low and mid elevations. The other species are used in the same area to a lesser extent, although they grow well in a semi-arid climate.
    [Show full text]
  • Revised BO Format (June 2005)
    1 United States Department of the Interior Fish and Wildlife Service Arizona Ecological Services Field Office 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021-4951 Telephone: (602) 242-0210 Fax: (602) 242-2513 In Reply Refer to: AESO/SE 22410-2009-F-0452 April 12, 2010 Memorandum To: Linda Dansby, Abandoned Mine Lands ARRA Program Manager, National Park Service, Intermountain Region, Santa Fe, New Mexico From: Field Supervisor Subject: Biological Opinion on a Proposal to Close Abandoned Mine Lands (AMLs) within Coronado National Memorial, Organ Pipe Cactus National Monument, Saguaro National Park, and Grand Canyon National Park Thank you for your request for formal consultation with the U.S. Fish and Wildlife Service (FWS) pursuant to section 7 of the Endangered Species Act of 1973 (16 U.S.C. 1531-1544), as amended (Act). Your request was dated February 11, 2010, and received by us on February 16, 2010. At issue are impacts that may result from the proposed closure of Abandoned Mine Lands within Coronado National Memorial, Grand Canyon National Park, Organ Pipe Cactus National Monument, and Saguaro National Park located in Cochise, Coconino, Mohave, and Pima counties, Arizona. The proposed action will adversely affect the endangered lesser long-nosed bat (Leptonycteris curasoae yerbabuenae). In your correspondence, you requested our concurrence that the proposed action is not likely to adversely affect the lesser long-nosed bat (in Saguaro National Park only), the threatened Mexican spotted owl (Strix occidentalis lucida) with critical habitat, the endangered Sonoran pronghorn (Antilocapra americana sonoriensis), the endangered southwestern willow flycatcher (Empidonax traillii extimus), and endangered California condor (Gymnogyps californianus).
    [Show full text]
  • Plant ID Guide
    Plant Identification Guide To the Common Trees, Shrubs, and Cacti of the Phoenix-Area Desert © 2008, 2010 Udo M. Savalli The Phoenix area contains numerous city parks as well as surrounding desert areas that are characteristic of the Arizona Upland division of Sonoran Desert scrub. Typical areas include Thunderbird Park in Glen- dale, Piestewa Peak and South Mountain preserves, among others, in Phoenix, and White Tanks Park. These areas are dominated by shrubs such as creosote bush (Larrea tridentata), bursage (Ambrosia spp.) and brittlebush (Encelia farinosa), small trees such as palo verdes (Parkinsonia spp.) and catclaw acacia (Acacia greggii) and various cacti. This guide is designed to introduce you to the most common woody plants in these parks. It is in no way complete and does not cover riparian vegetation. Trees The majority of the trees and large shrubs in the Sonoran desert belong to the family Leguminosae (also called Fabaceae). This family is characterized by having distinctive fruits that form a two-part pod (leg- ume). Most local legumes also have compound leaves, meaning that each leaf is actually subdivided into numerous individual leaflets. Legumes are particularly important to ecosystems because their roots har- bor endosymbiotic Rhizobium bacteria that have the ability to fix nitrogen. Blue Paloverde, Parkinsonia florida (family Leguminosae). This species was formerly classified as Cercidium floridum. This species and the next can both be easily recognized even at a distance by their distinctive green bark. Blue paloverde leaflets are quite small, about 5mm, but larger than those of little- leaf paloverde. Furthermore, the fruits of blue paloverdes lack an obvious constric- tion.
    [Show full text]
  • A New Subfamily Classification of The
    LPWG Phylogeny and classification of the Leguminosae TAXON 66 (1) • February 2017: 44–77 A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny The Legume Phylogeny Working Group (LPWG) Recommended citation: LPWG (2017) This paper is a product of the Legume Phylogeny Working Group, who discussed, debated and agreed on the classification of the Leguminosae presented here, and are listed in alphabetical order. The text, keys and descriptions were written and compiled by a subset of authors indicated by §. Newly generated matK sequences were provided by a subset of authors indicated by *. All listed authors commented on and approved the final manuscript. Nasim Azani,1 Marielle Babineau,2* C. Donovan Bailey,3* Hannah Banks,4 Ariane R. Barbosa,5* Rafael Barbosa Pinto,6* James S. Boatwright,7* Leonardo M. Borges,8* Gillian K. Brown,9* Anne Bruneau,2§* Elisa Candido,6* Domingos Cardoso,10§* Kuo-Fang Chung,11* Ruth P. Clark,4 Adilva de S. Conceição,12* Michael Crisp,13* Paloma Cubas,14* Alfonso Delgado-Salinas,15 Kyle G. Dexter,16* Jeff J. Doyle,17 Jérôme Duminil,18* Ashley N. Egan,19* Manuel de la Estrella,4§* Marcus J. Falcão,20 Dmitry A. Filatov,21* Ana Paula Fortuna-Perez,22* Renée H. Fortunato,23 Edeline Gagnon,2* Peter Gasson,4 Juliana Gastaldello Rando,24* Ana Maria Goulart de Azevedo Tozzi,6 Bee Gunn,13* David Harris,25 Elspeth Haston,25 Julie A. Hawkins,26* Patrick S. Herendeen,27§ Colin E. Hughes,28§* João R.V. Iganci,29* Firouzeh Javadi,30* Sheku Alfred Kanu,31 Shahrokh Kazempour-Osaloo,32* Geoffrey C.
    [Show full text]
  • Climate Change Impact on Olneya Tesota A. Gray (Ironwood) Distribution in Sonoran Desert Using Maxent Modeling Approach
    Journal of Wildlife and Biodiversity 1(2): 110-117 (2017) by Arak University, Iran (http://jwb.araku.ac.ir/) Research Article DOI: 10.22120/jwb.2017.28427 Climate change impact on Olneya tesota A. Gray (Ironwood) distribution in Sonoran desert using MaxEnt Modeling approach variable is BIO2=Mean Diurnal Range (Mean of 1 Ahmad Moghaddam-Gheshlagh *, Sergio monthly (max temp - min temp)) (0.9%). This 1 Hernández-Verdugo , Edgar Omar means that the presence of the species is highly 2 3 Rueda-Puente , Jesús Soria-Ruiz , Saúl depended on dry months precipitation of which 1 Parra-Terrazas , Antonio Pacheco- doesn’t have high fluctuations according to the 1 4 Olvera , Nastaran Mafakheri used climate change scenario. Temperature fluctuations have not affected O. tesota A. Gray 1 *Agronomy Faculty, Autonomous University presence as it is known as a resistant species for of Sinaloa, Sinaloa, Mexico. extremely high temperatures. Therefore the email: [email protected] probability of the presence of the species shows 2Agriculture and Livestock Department (DAG), a significant increase on high altitudes University of Sonora, Bahía Kino Highway Km 18.5. 83000 Hermosillo, Sonora, México. mountains on the north-east of the Sonora state. 3Geomatics Lab., National Institute of Research Finally, the study concludes that the climate for Forestry Agricultural and Livestock change will affect the distribution of the O. (INIFAP). Zinacantepec 51350, Mexico. tesota A. Gray as an extinction risk and the same 4Dep. of Environmental Sciences, Faculty of time will help the expansion of the species Agriculture and Natural Resources, Arak presence probability on the region.
    [Show full text]
  • Conspecific Pollen Loads on Insects Visiting Female Flowers on Parasitic Phoradendron Californicum (Viscaceae)
    Western North American Naturalist Volume 76 Number 1 Article 11 3-31-2016 Conspecific pollen loads on insects visiting emalef flowers on parasitic Phoradendron californicum (Viscaceae) William D. Wiesenborn [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Wiesenborn, William D. (2016) "Conspecific pollen loads on insects visiting emalef flowers on parasitic Phoradendron californicum (Viscaceae)," Western North American Naturalist: Vol. 76 : No. 1 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol76/iss1/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 76(1), © 2016, pp. 113–121 CONSPECIFIC POLLEN LOADS ON INSECTS VISITING FEMALE FLOWERS ON PARASITIC PHORADENDRON CALIFORNICUM (VISCACEAE) William D. Wiesenborn1 ABSTRACT.—Desert mistletoe, Phoradendron californicum (Viscaceae), is a dioecious parasitic plant that grows on woody legumes in the Mojave and Sonoran Deserts, produces minute flowers during winter, and is dispersed by birds defecating fruits. Pollination of desert mistletoe has not been examined despite the species’ reliance on insects for trans- porting pollen from male to female plants. I investigated the pollination of P. californicum parasitizing Acacia greggii (Fabaceae) shrubs at 3 sites at different elevations in the Mojave Desert of southern Nevada during February 2015. I examined pollen from male flowers, aspirated insects landing on female flowers, and counted pollen grains in insect pollen loads.
    [Show full text]
  • Creosote Bush Larrea Tridentata
    Sonoran Desert Lowest (elevation) and warmest of the North American deserts GREAT BASIN Two rainfall seasons—winter rains DESERT off the Pacific and summer Monsoon storms from moisture California pulled up largely from the Gulf of MOHAVE California (aka Sea of Cortez) DESERT Arizona Greatest biodiversity due to: SONORAN • Dual rainfall seasons DESERT • Variations in topography • Influence of Rocky Mountains/ Sierra Madre Occidental, Great Baja California Plains, Tropical Deciduous Forest, Oregon CHIHUAHUAN etc. DESERT Covers parts of two states in the Baja California Sur US and three in Mexico More than 2,000 described plant species! Arizona Upland Highest, coolest, and one of the wettest subdivisions Saguaro Carnegiea gigantea “Columnar” Cactus • 30 to 50 feet tall • Can reach ages over 200 years Arizona’s State Flower! Tohono O’odham Organ Pipe Cactus Stenocereus thurberi Senita Cactus Lophocereus schottii Senita Moth Upiga virescens Arizona or Fishhook Barrel Cactus Ferocactus wislizenii 8 to 12 feet tall May lean to the southwest Prickly Pear Sprawling Opuntia spp. Prickly Pear O. phaeacantha Engelmann Prickly Pear O. engelmannii Santa Rita Prickly Pear O. santa-rita Cholla Cylindropuntia spp. Teddy Bear Cholla C. bigelovii Chainfruit or “Jumping” Cholla C. fulgida Cane Cholla C. spinosior Legumes: The Pea/Bean Family Fabaceae Contain symbiotic bacteria within nodules in their root systems •The bacteria produces nitrogen compounds that help the plant to grow and compete with other plants • When the plant dies, the “fixed” nitrogen • Seed pods (beans) is released making it are an important available to other food source for plants; this helps animals and desert fertilize the soil people! Palo Verde Arizona’s State Tree! Parkinsonia spp.
    [Show full text]