Euclid's Elements Redux

Total Page:16

File Type:pdf, Size:1020Kb

Euclid's Elements Redux Euclid’s “Elements” Redux Daniel Callahan John Casey Sir Thomas Heath Version 2016-169 “Euclid’s ’Elements’ Redux” ©2016 Daniel Callahan, licensed under the Cre- ative Commons Attribution-ShareAlike 4.0 International License. Selections from the American Heritage® Dictionary of the English Language, Fourth Edition, ©2000 by Houghton Mifflin Company. Updated in 2009. Pub- lished by Houghton Mifflin Company. All rights reserved. Selections from Dictionary.com Unabridged Based on the Random House Dic- tionary, © Random House, Inc. 2013. All rights reserved. Questions? Comments? Did you find an error? Email me at: [email protected] Make sure to include the version number (written above). Download this book for free at: http://www.starrhorse.com/euclid/ “Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does the proof use the hypothesis?” - Paul Halmos “Pure mathematics is, in its way, the poetry of logical ideas.” - Albert Einstein “Math is like going to the gym for your brain. It sharpens your mind.” - Danica McKellar “One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a way of blooming into beau- tiful theories.” - Philip J. Davis Contents Chapter 0. About this project 6 0.1. Contributions & Acknowledgments 9 0.2. Dedication 9 0.3. About Euclid’s “Elements” 10 0.4. Open Textbooks 16 0.5. Recommended Reading 20 Chapter 1. Angles, Parallel Lines, Parallelograms 23 1.1. Symbols, Logic, and Definitions 23 1.2. Postulates 35 1.3. Axioms 36 1.4. Propositions from Book I: 1-26 41 1.5. Propositions from Book I: 27-48 90 Chapter 2. Rectangles 134 2.1. Definitions 134 2.2. Axioms 135 2.3. Propositions from Book II 136 Chapter 3. Circles 163 3.1. Definitions 163 3.2. Propositions from Book III 169 Chapter 4. Inscription and Circumscription 244 4.1. Definitions 244 4.2. Propositions from Book IV 245 Chapter 5. Theory of Proportions 278 5.1. Definitions 278 5.2. Propositions from Book V 280 Chapter 6. Applications of Proportions 288 6.1. Definitions 288 6.2. Propositions from Book VI 291 4 CONTENTS 5 Chapter 7. Elementary Number Theory 369 7.1. Definitions 369 7.2. Propositions from Book VII 372 Chapter 8. Proportions & Geometric Sequences 399 8.1. Definitions 399 8.2. Propositions from Book VIII 402 Chapter 9. Solutions 418 9.1. Solutions for Chapter 1 418 9.2. Solutions for Chapter 2 469 9.3. Solutions for Chapter 3 474 9.4. Solutions for Chapter 4 482 9.5. Solutions for Chapter 5 486 CHAPTER 0 About this project The goal of this textbook is to provide an edition of Euclid’s “Elements” that is easy to read, inexpensive, has an open culture license, and can legally be distributed anywhere in the world. The title Euclid’s “Elements” Redux indicates that while this edition covers each of Euclid’s results, the proofs themselves have been written using modern mathematics. This is because mathematics has almost completely changed since Euclid wrote “The Elements”. In Euclid’s Hellenistic culture, a number was synonymous with a length that could be measured with a ruler, a rope, or some other such device. This gave Euclid access to all of the positive numbers but none of the negative numbers. (The Greeks also had a difficult time working with 0.) But since the develop- ment of algebra wouldn’t begin for another 1,000 years, Euclid could not have known that the result of Book I Proposition 47 could be written as a2 + b2 = c2. This means that when a modern student encounters Euclid for the first time, he or she has two problems to solve: the logic of the proof, and Euclid’s now ar- chaic concepts of what numbers are and how they related to each other. While Euclid’s original intentions are of great interest to math historians, they can confuse beginners. This edition helps students understand Euclid’s results by using modern proofs, and these results contain material that every math student should know. This is one reason Euclid’s “Elements” was the world’s most important mathematics textbook for about 2,200 years. Let that number sink in for a moment... one math textbook was used by much of the literate world for over two thousand years. Why should this be? Lack of competition? At certain times and places, yes, but in schools where Euclid’s “Elements” got a foothold, other textbooks soon followed. Therefore, lack of competition can’t be the complete answer. 6 0. ABOUT THIS PROJECT 7 Elegant proofs? Most of Euclid’s proofs can and were rewritten as new math was developed. So while the originals remain a model for how proofs can be written, they aren’t irreplaceable. Content? Until the development of algebra and calculus, Euclid’s “Elements” covered everything a novice mathematician needed to know. And even after calculus was developed, “The Elements” still had its place. Isaac Newton’s assistant claimed that in five years of service, he heard Newton laugh just once: a student asked if Euclid were still worth studying, and Newton laughed at his ignorance. But most students only studied the first six Books (i.e., the first six of the thirteen scrolls that made up the original edition of “The Elements”). Therefore not everyone studied “The Elements” exclusively for its content. So, whatever is valuable about “The Elements” must be present in the first half of the book; but each Book begins with a secure intellectual foundation (definitions and axioms) and builds upwards one proposition at a time. And that, I think, is the key to answering this question: not only does “The Elements” help a student learn geometry, but it also trains the student’s mind to use logic properly. Learning algebra helps a student to learn calculus and statistics, but learning geometric proofs helps a student to think clearly about politics, art, music, design, coding, law... any subject that requires rational thought can be better understood after working through “The Elements”. The reason “The Elements” was needed in the past, and why it’s needed today, is that it helps students learn to think clearly. But if it’s such a good textbook, why was it abandoned after the 19th century? The last quarter of that decade saw an explosion of new mathematics, includ- ing the construction of formal logic and a new rigorous approach to proof writ- ing. Suddenly, Euclid began to look dated; and as calculus became the gate- way to engineering and the sciences, algebra became the course every student seemed to need. Geometric proofs became a luxury rather than a necessity. This was a mistake which has hindered generations from learning to think logically. While the mathematical developments of the late 19th century led to a mathe- matical Golden Age (one which we are still in), one of the best pedagogical tools ever written was discarded. Perhaps if “The Elements” were rewritten to con- form to current textbook standards, its importance in geometry, proof writing, and as a case-study in logic might once again be recognized by the worldwide educational community. This edition of Euclid can be used in a number of ways: 0. ABOUT THIS PROJECT 8 • As a means of introducing students to proofs and to writing proofs. • As a supplement to any geometry or analytical geometry textbook. • As a textbook for self-study and homeschooling. This edition also contains homework problems and a partial answer key. Euclid’s “Elements” Redux has been released under the Creative Commons Attribution-ShareAlike 4.0 International License. This means that you are free to copy and distribute it commercially or otherwise without penalty. If you wish to add to it, your work must be licensed under the same Creative Commons license. This textbook requires its student to work slowly and carefully through each section. The student should check every result stated in the book and not take anything on faith. While this process may seem tedious, it is exactly this attention to detail which separates those who understand mathematics from those who do not. The prerequisites for this textbook include a desire to solve problems and to learn mathematical logic. Some background in proportions, algebra, trigonom- etry, and possibly linear algebra may be helpful. However, there is no mistak- ing the fact that the homework in this textbook is unlike that of most other elementary math textbooks. Rather than posing questions which require cal- culations to answer, these problems require a written proof. Students who have no knowledge of proof writing should only be asked to solve the simplest of problems at first; students or parents of students who have no idea how to proceed are encouraged to read Richard Hammack’s Book of Proof, 2nd ed. or a similar proof-writing textbook (see section 1.5 for details). But it is vitally important to understand that to mathematicians proofs are mathematics. Most mathematicians at the Ph.D. level leave the calculation of difficult prob- lems to physicists and engineers; the job of a mathematician is to prove that an answer to the problem exists before the calculations begin. So, despite the fact that most students take classes described as “math” or “maths”, most peo- ple (including those who claim to hate math) do not know what mathematics actually is; in essence, math is proofs. The figures in this textbook were created in GeoGebra. They can be found in the images folder in the source files for this textbook.
Recommended publications
  • Special Isocubics in the Triangle Plane
    Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60.
    [Show full text]
  • Delaunay Triangulations of Points on Circles Arxiv:1803.11436V1 [Cs.CG
    Delaunay Triangulations of Points on Circles∗ Vincent Despr´e † Olivier Devillers† Hugo Parlier‡ Jean-Marc Schlenker‡ April 2, 2018 Abstract Delaunay triangulations of a point set in the Euclidean plane are ubiq- uitous in a number of computational sciences, including computational geometry. Delaunay triangulations are not well defined as soon as 4 or more points are concyclic but since it is not a generic situation, this difficulty is usually handled by using a (symbolic or explicit) perturbation. As an alter- native, we propose to define a canonical triangulation for a set of concyclic points by using a max-min angle characterization of Delaunay triangulations. This point of view leads to a well defined and unique triangulation as long as there are no symmetric quadruples of points. This unique triangulation can be computed in quasi-linear time by a very simple algorithm. 1 Introduction Let P be a set of points in the Euclidean plane. If we assume that P is in general position and in particular do not contain 4 concyclic points, then the Delaunay triangulation DT (P ) is the unique triangulation over P such that the (open) circumdisk of each triangle is empty. DT (P ) has a number of interesting properties. The one that we focus on is called the max-min angle property. For a given triangulation τ, let A(τ) be the list of all the angles of τ sorted from smallest to largest. DT (P ) is the triangulation which maximizes A(τ) for the lexicographical order [4,7] . In dimension 2 and for points in general position, this max-min angle arXiv:1803.11436v1 [cs.CG] 30 Mar 2018 property characterizes Delaunay triangulations and highlights one of their most ∗This work was supported by the ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.
    [Show full text]
  • Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry
    Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry 16 Notes ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL You must have measured the angles between two straight lines. Let us now study the angles made by arcs and chords in a circle and a cyclic quadrilateral. OBJECTIVES After studying this lesson, you will be able to • verify that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle; • prove that angles in the same segment of a circle are equal; • cite examples of concyclic points; • define cyclic quadrilterals; • prove that sum of the opposite angles of a cyclic quadrilateral is 180o; • use properties of cyclic qudrilateral; • solve problems based on Theorems (proved) and solve other numerical problems based on verified properties; • use results of other theorems in solving problems. EXPECTED BACKGROUND KNOWLEDGE • Angles of a triangle • Arc, chord and circumference of a circle • Quadrilateral and its types Mathematics Secondary Course 395 MODULE - 3 Angles in a Circle and Cyclic Quadrilateral Geometry 16.1 ANGLES IN A CIRCLE Central Angle. The angle made at the centre of a circle by the radii at the end points of an arc (or Notes a chord) is called the central angle or angle subtended by an arc (or chord) at the centre. In Fig. 16.1, ∠POQ is the central angle made by arc PRQ. Fig. 16.1 The length of an arc is closely associated with the central angle subtended by the arc. Let us define the “degree measure” of an arc in terms of the central angle.
    [Show full text]
  • Application of Nine Point Circle Theorem
    Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project.
    [Show full text]
  • CIRCLE and SPHERE GEOMETRY. [July
    464 CIRCLE AND SPHERE GEOMETRY. [July, CIRCLE AND SPHERE GEOMETRY. A Treatise on the Circle and the Sphere. By JULIAN LOWELL COOLIDGE. Oxford, the Clarendon Press, 1916. 8vo. 603 pp. AN era of systematizing and indexing produces naturally a desire for brevity. The excess of this desire is a disease, and its remedy must be treatises written, without diffuseness indeed, but with the generous temper which will find room and give proper exposition to true works of art. The circle and the sphere have furnished material for hundreds of students and writers, but their work, even the most valuable, has been hitherto too scattered for appraisement by the average student. Cyclopedias, while indispensable, are tan­ talizing. Circles and spheres have now been rescued from a state of dispersion by Dr. Coolidge's comprehensive lectures. Not a list of results, but a well digested account of theories and methods, sufficiently condensed by judicious choice of position and sequence, is what he has given us for leisurely study and enjoyment. The reader whom the author has in mind might be, well enough, at the outset a college sophomore, or a teacher who has read somewhat beyond the geometry expected for en­ trance. Beyond the sixth chapter, however, or roughly the middle of the book, he must be ready for persevering study in specialized fields. The part most read is therefore likely to be the first four chapters, and a short survey of these is what we shall venture here. After three pages of definitions and conventions the author calls "A truce to these preliminaries!" and plunges into inversion.
    [Show full text]
  • Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol
    S. Ramassamy (2020) “Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol. 2020, No. 3, pp. 813–852 Advance Access Publication March 21, 2018 doi:10.1093/imrn/rny039 Downloaded from https://academic.oup.com/imrn/article-abstract/2020/3/813/4948410 by Indian Institute of Science user on 10 July 2020 Miquel Dynamics for Circle Patterns Sanjay Ramassamy∗ Unité de Mathématiques Pures et Appliquées, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France ∗ Correspondence to be sent to: e-mail: [email protected] We study a new discrete-time dynamical system on circle patterns with the combina- torics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel’s six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve. 1 Introduction This paper is about a conjecturally integrable discrete-time dynamical system on circle patterns. Circle patterns are configurations of circles on a surface with combinatorially prescribed intersections. They have been actively studied since Thurston conjectured that circle packings (a variant of circle patterns where neighboring circles are tangent) provide discrete approximations of Riemann mappings between two simply connected domains [25].
    [Show full text]
  • Circle Geometry
    Circle Geometry The BEST thing about Circle Geometry is…. you are given the Question and (mostly) the Answer as well. You just need to fill in the gaps in between! Mia David MA BSc Dip Ed UOW 24.06.2016 Topic: Circle Geometry Page 1 There are a number of definitions of the parts of a circle which you must know. 1. A circle consists of points which are equidistant from a fixed point (centre) The circle is often referred to as the circumference. 2. A radius is an interval which joins the centre to a point on the circumference. 3. A chord is an interval which joins two points on the circumference. 4. A diameter is a chord which passes through the centre. 5. An arc is a part of the circumference of a circle. 6. A segment is an area which is bounded by an arc and a chord. (We talk of the ALTERNATE segment, as being a segment on the OTHER side of a chord. We also refer to a MAJOR and a MINOR segment, according to the size.) 7. A semicircle is an area bounded by an arc and a diameter. 8. A sector is an area bounded by an arc and two radii. 9. A secant is an interval which intersects the circumference of a circle twice. 10. A tangent is a secant which intersects the circumference twice at the same point. (Usually we just say that a tangent TOUCHES the circle) 11. Concentric circles are circles which have the same centre. 12. Equal circles are circles which have the same radius.
    [Show full text]
  • Rational Distance Sets on Conic Sections
    Rational Distance Sets on Conic Sections Megan D. Ly Shawn E. Tsosie Lyda P. Urresta Loyola Marymount UMASS Amherst Union College July 2010 Abstract Leonhard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational; the same statement is nearly always true for lines and other circles. In 2004, Garikai Campbell considered the question of a rational distance set consisting of four points on a parabola. We introduce new ideas to discuss a rational distance set of four points on a hyperbola. We will also discuss the issues with generalizing to a rational distance set of five points on an arbitrary conic section. 1 Introduction A rational distance set is a set whose elements are points in R2 which have pairwise rational distance. Finding these sets is a difficult problem, and the search for rational distance sets with rational coordinates is even more difficult. The search for rational distance sets has a long history. Leonard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational. In 1945 Stanislaw Ulam posed a question about a rational distance set: is there an everywhere dense rational distance set in the plane [2]? Paul Erd¨osalso considered the problem and he conjectured that the only irreducible algebraic curves which have an infinite rational distance set are the line and the circle [4]. This was later proven to be true by Jozsef Solymosi and Frank de Zeeuw [4].
    [Show full text]
  • The Secrets of Triangles: a Mathematical Journey
    2 3 Published 2012 by Prometheus Books The Secrets of Triangles: A Mathematical Journey. Copyright © 2012 by Alfred S. Posamentier and Ingmar Lehmann. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digital, electronic, mechanical, photocopying, recording, or otherwise, or conveyed via the Internet or a website without prior written permission of the publisher, except in the case of brief quotations embodied in critical articles and reviews. Cover image © Media Bakery/Glenn Mitsui Jacket design by Jacqueline Nasso Cooke Inquiries should be addressed to Prometheus Books 59 John Glenn Drive Amherst, New York 14228–2119 OICE: 716–691–0133 FAX: 716–691–0137 WWW.PROMETHE SBOOKS.COM 16 15 14 13 12 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Posamentier, Alfred S. The secrets of triangles : a mathematical journey / by Alfred S. Posamentier and Ingmar Lehmann. p. cm. Includes bibliographical references and index. ISBN 978–1–61614–587–3 (cloth : alk. paper) ISBN 978–1–61614–588–0 (ebook) 1. Trigonometry. 2. Triangle. I. Lehmann, Ingmar. II. Title. QA531.P67 2012 516'.154—dc23 2012013635 4 Printed in the nited States of America on acid-free paper 5 6 Acknowledgments Preface 1. Introduction to the Triangle 2. Concurrencies of a Triangle 3. Noteworthy Points in a Triangle 4. Concurrent Circles of a Triangle 5. Special Lines of a Triangle 6. seful Triangle Theorems 7. Areas of and within Triangles 8. Triangle Constructions 9. Inequalities in a Triangle 10. Triangles and Fractals Appendix Notes References Index 7 The authors wish to extend sincere thanks for proofreading and useful suggestions to Dr.
    [Show full text]
  • Complements to Classic Topics of Circles Geometry
    Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry 1 Ion Patrascu, Florentin Smarandache In the memory of the first author's father Mihail Patrascu and the second author's mother Maria (Marioara) Smarandache, recently passed to eternity... 2 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 3 Ion Patrascu, Florentin Smarandache © 2016 Ion Patrascu & Florentin Smarandache All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners. ISBN 978-1-59973-465-1 4 Complements to Classic Topics of Circles Geometry Contents Introduction ....................................................... 15 Lemoine’s Circles ............................................... 17 1st Theorem. ........................................................... 17 Proof. ................................................................. 17 2nd Theorem. ......................................................... 19 Proof. ................................................................ 19 Remark. ............................................................ 21 References.
    [Show full text]
  • Complements to Classic Topics of Circles Geometry
    University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2016 Complements to Classic Topics of Circles Geometry Florentin Smarandache University of New Mexico, [email protected] Ion Patrascu Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Algebraic Geometry Commons, Applied Mathematics Commons, Geometry and Topology Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin and Ion Patrascu. "Complements to Classic Topics of Circles Geometry." (2016). https://digitalrepository.unm.edu/math_fsp/264 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry 1 Ion Patrascu, Florentin Smarandache In the memory of the first author's father Mihail Patrascu and the second author's mother Maria (Marioara) Smarandache, recently passed to eternity... 2 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 3 Ion Patrascu, Florentin Smarandache © 2016 Ion Patrascu & Florentin Smarandache All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners.
    [Show full text]
  • Characterizations of Orthodiagonal Quadrilaterals
    Forum Geometricorum b Volume 12 (2012) 13–25. b b FORUM GEOM ISSN 1534-1178 Characterizations of Orthodiagonal Quadrilaterals Martin Josefsson Abstract. We prove ten necessary and sufficient conditions for a convex quadri- lateral to have perpendicular diagonals. One of these is a quite new eight point circle theorem and three of them are metric conditions concerning the nonover- lapping triangles formed by the diagonals. 1. A well known characterization An orthodiagonal quadrilateral is a convex quadrilateral with perpendicular di- agonals. The most well known and in problem solving useful characterization of orthodiagonal quadrilaterals is the following theorem. Five other different proofs of it was given in [19, pp.158–159], [11], [15], [2, p.136] and [4, p.91], using respectively the law of cosines, vectors, an indirect proof, a geometric locus and complex numbers. We will give a sixth proof using the Pythagorean theorem. Theorem 1. A convex quadrilateral ABCD is orthodiagonal if and only if 2 2 2 2 AB + CD = BC + DA . C b D b Y b b X b b A B Figure 1. Normals to diagonal AC Proof. Let X and Y be the feet of the normals from D and B respectively to diagonal AC in a convex quadrilateral ABCD, see Figure 1. By the Pythagorean theorem we have BY 2+AY 2 = AB2, BY 2+CY 2 = BC2, DX2+CX2 = CD2 Publication Date: February 22, 2012. Communicating Editor: Paul Yiu. 14 M. Josefsson and AX2 + DX2 = DA2. Thus 2 2 2 2 AB + CD − BC − DA 2 2 2 2 = AY − AX + CX − CY = (AY + AX)(AY − AX) + (CX + CY )(CX − CY ) = (AY + AX)XY + (CX + CY )XY = (AX + CX + AY + CY )XY = 2AC · XY.
    [Show full text]