S. Ramassamy (2020) “Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol. 2020, No. 3, pp. 813–852 Advance Access Publication March 21, 2018 doi:10.1093/imrn/rny039 Downloaded from https://academic.oup.com/imrn/article-abstract/2020/3/813/4948410 by Indian Institute of Science user on 10 July 2020 Miquel Dynamics for Circle Patterns Sanjay Ramassamy∗ Unité de Mathématiques Pures et Appliquées, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France ∗ Correspondence to be sent to: e-mail:
[email protected] We study a new discrete-time dynamical system on circle patterns with the combina- torics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel’s six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve. 1 Introduction This paper is about a conjecturally integrable discrete-time dynamical system on circle patterns. Circle patterns are configurations of circles on a surface with combinatorially prescribed intersections. They have been actively studied since Thurston conjectured that circle packings (a variant of circle patterns where neighboring circles are tangent) provide discrete approximations of Riemann mappings between two simply connected domains [25].