Rational Distance Sets on Conic Sections

Total Page:16

File Type:pdf, Size:1020Kb

Rational Distance Sets on Conic Sections Rational Distance Sets on Conic Sections Megan D. Ly Shawn E. Tsosie Lyda P. Urresta Loyola Marymount UMASS Amherst Union College July 2010 Abstract Leonhard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational; the same statement is nearly always true for lines and other circles. In 2004, Garikai Campbell considered the question of a rational distance set consisting of four points on a parabola. We introduce new ideas to discuss a rational distance set of four points on a hyperbola. We will also discuss the issues with generalizing to a rational distance set of five points on an arbitrary conic section. 1 Introduction A rational distance set is a set whose elements are points in R2 which have pairwise rational distance. Finding these sets is a difficult problem, and the search for rational distance sets with rational coordinates is even more difficult. The search for rational distance sets has a long history. Leonard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational. In 1945 Stanislaw Ulam posed a question about a rational distance set: is there an everywhere dense rational distance set in the plane [2]? Paul Erd¨osalso considered the problem and he conjectured that the only irreducible algebraic curves which have an infinite rational distance set are the line and the circle [4]. This was later proven to be true by Jozsef Solymosi and Frank de Zeeuw [4]. First, we provide the formal definition of a rational distance set: 2 Definition 1.1. A rational distance set S is a set of elements Pi = (xi; yi) 2 R , 1 ≤ i ≤ n, such that for all Pi;Pj 2 S, jjPi − Pjjj is a rational number. We are primarily concerned with finding rational distance sets of rational points. p 2 2 The distance between two points on a graph is (xi − xj) + (yi − yj) . It will prove useful to rewrite this formula as s 2 yi − yj jxi − xjj 1 + (1) xi − xj Now, consider the following lemma: 1 Lemma 1.2. The rational solutions to the equation α2 = 1 + β2 (2) m2 + 1 m2 − 1 can be parameterized by α = ; β = , for m 2 ; m 6= 0. 2m 2m Q For the proof, refer to Campbell [1, Lemma 2.1]. 2 Main results 2.1 Line Theorem 2.1. For any line L: ax + by + c = 0, for a; b; c 2 Q, there exists a dense rational distance set with rational coordinates if and only if there exists m 2 Q such that a2 + b2 = m2. Proof. Suppose L has a dense rational distance set with rational coordinates. Then a c we can express the line L as y = − b x − b . Consider two points on L,(xi; yi) and (xj; yj). Using Lemma 1.2, we can write the distance between these two points as r a2 jx − x j 1 + : (3) i j b a2 2 2 2 2 2 The distance is rational only if 1 + b2 = n for n 2 Q. That is, if a + b = b n . Hence, we may set m = bn. a c Suppose a2 +b2 = m2 for m 2 Q. Then line L can be written as y = − x− . The bq b a 2 distance between two rational points on L,(xi; yi) and (xj; yj), is jxi − xjj 1 + b . 2 2 2 a2 m2 Note that from Lemma 1.2 we can write a + b = m as 1 + b2 = b2 . Hence, we see q a2 m 1 + b2 = b , which is rational. 2.2 Circle To show that there exists a rational distance set of rational points on a circle, we identify the cartesian plane R2 with the complex plane C. Theorem 2.2. Let r 2 Q with r 6= 0 and let C : kz − z0k = r be a circle in the complex plane with z0 = x+iy; x; y 2 Q. Then, there exists a dense rational distance set on C consisting of rational points. 2 1 Sketch of Proof. Consider the vertical line L: Re z = 2r . Let f : C ! C be the M¨obiustransformation defined by (z − r)z − 1 f(z) = 0 : z Then f maps the line L into the circle C. The following figure shows this for a circle with radius r < 1 centered at z0. A dense rational distance set of rational points on L is given by 1 s2 − 1 S = z = 1 + i s 2 ; s 6= 0 : 2r 2s Q Notice that Lemma 1.2 implies that each z 2 S has rational norm kzk. The codomain f(S) = ff(z) z 2 Sg will then be a dense set of points on C with rational coordinates. Finally notice that f is a translation composed with the map z 7! −1=z. Then, the rationality of the distance between the points on the codomain follows from the identity 1 1 kz − wk − = : z w kzk · kwk 2.3 Rational Distance Set of Three Points on a Parabola Consider the parabola y = ax2 + bx + c where a; b; c 2 Q. We provide a geometric intuition of the problem. An important note for this construction is that while the points are at rational distance, the points themselves do not have to be rational. We present a method for constructing a rational distance set of three points on a parabola. Note that we can find a rational distance set using 3 (a) Two concentric circles with (b) Moving the construction rational radii are centered at along the parabola, we note some point on the parabola. that the length of segment P2P3 changes Figure 1: While P1P2 and P1P3 are rational, we cannot guarantee that P2P3 is also rational. Since the length of P2P3 changes, the segment P2P3 must have a rational length at some point on the parabola. this method on any conic section. First, we choose some point on the parabola and construct two circles of rational radii around it, as shown in Figure 1. In Figure 1, we see that the line segments P1P2 and P1P3 are rational. All we require now is that P2P3 be rational. This segment is not necessarily rational. We can, however, make it rational. If we allow the construction to move along the parabola, we notice that the length of segment P2P3 changes. We see from this construction that the length of segment P2P3 is a continuous function on an interval. Therefore, we can find some point in the parabola where the segment P2P3 is rational. Now we turn to the more difficult problem of finding rational distance sets of rational points on the parabola. By equation 1, the distance dij between two rational points Pi and Pj on a parabola is q 2 dij = jxi − xjj 1 + (axi + axj + b) : 2 mij −1 1 m2−1 By Lemma 1.2, axi + axj + b = . We let g(m) = ( − b), which leads us to 2mij a 2m the following theorem: 2 Theorem 2.3. Given a parabola y = ax +bx+c, let S = fP1;P2;P3g. S is a rational distance set of rational points if and only if 1 ≤ i < j ≤ 3 we can find a nonzero 4 rational value mij such that g(m ) + g(m ) − g(m ) x = 12 13 23 1 2 g(m ) − g(m ) + g(m ) x = 12 13 23 2 2 −g(m ) + g(m ) + g(m ) x = 12 13 23 3 2 Proof. For each 1 ≤ i < j ≤ 3 where xi + xj = g(mij), we have three equations: x1 + x2 = g(m12) x1 + x3 = g(m13) x2 + x3 = g(m23) This is equivalent to the following row reduced augmented matrix: 0 g(m12)+g(m13)−g(m23) 1 1 0 0 2 B 0 1 0 g(m12)−g(m13)+g(m23) C @ 2 A −g(m12)+g(m13)+g(m23) 0 0 1 2 which gives us our desired values. 2.4 Rational Distance Set of Four Points on a Parabola We can follow a similar argument to find a rational distance set of four rational points on a parabola. 2 Theorem 2.4. Given a parabola y = ax + bx + c, let S = fP1;P2;P3;P4g. S is a rational distance set of rational points if and only if there are rational values mij, 1 ≤ i < j ≤ 4 such that 1 x = (g(m ) + g(m ) − g(m )) 1 2 12 13 23 1 x = (g(m ) − g(m ) + g(m )) 2 2 12 13 23 1 x = (−g(m ) + g(m ) + g(m )) 3 2 12 13 23 1 x = (−g(m ) − g(m ) + g(m ) + 2g(m )) 4 2 12 13 23 14 and g(m13) + g(m24) = g(m23) + g(m14) = g(m12) + g(m34) 5 Proof. For each 1 ≤ i < j ≤ 4 where xi + xj = g(mij), we have six equations: x1 + x2 = g(m12) x1 + x3 = g(m13) x1 + x4 = g(m14) x2 + x3 = g(m23) x2 + x4 = g(m24) x3 + x4 = g(m34) This is equivalent to the following row reduced augmented matrix: 0 g(m12)+g(m13)−g(m23) 1 1 0 0 0 2 B 0 1 0 0 g(m12)−g(m13)+g(m23) C B 2 C B −g(m12)+g(m13)+g(m23) C B 0 0 1 0 2 C B −g(m12)−g(m13)+g(m23)+2g(m14) C B 0 0 0 1 C B 2 C @ 0 0 0 0 g(m13) + g(m24) − g(m23) − g(m14) A 0 0 0 0 g(m12) + g(m34) − g(m23) − g(m14) which gives us our desired equations.
Recommended publications
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Special Isocubics in the Triangle Plane
    Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60.
    [Show full text]
  • Delaunay Triangulations of Points on Circles Arxiv:1803.11436V1 [Cs.CG
    Delaunay Triangulations of Points on Circles∗ Vincent Despr´e † Olivier Devillers† Hugo Parlier‡ Jean-Marc Schlenker‡ April 2, 2018 Abstract Delaunay triangulations of a point set in the Euclidean plane are ubiq- uitous in a number of computational sciences, including computational geometry. Delaunay triangulations are not well defined as soon as 4 or more points are concyclic but since it is not a generic situation, this difficulty is usually handled by using a (symbolic or explicit) perturbation. As an alter- native, we propose to define a canonical triangulation for a set of concyclic points by using a max-min angle characterization of Delaunay triangulations. This point of view leads to a well defined and unique triangulation as long as there are no symmetric quadruples of points. This unique triangulation can be computed in quasi-linear time by a very simple algorithm. 1 Introduction Let P be a set of points in the Euclidean plane. If we assume that P is in general position and in particular do not contain 4 concyclic points, then the Delaunay triangulation DT (P ) is the unique triangulation over P such that the (open) circumdisk of each triangle is empty. DT (P ) has a number of interesting properties. The one that we focus on is called the max-min angle property. For a given triangulation τ, let A(τ) be the list of all the angles of τ sorted from smallest to largest. DT (P ) is the triangulation which maximizes A(τ) for the lexicographical order [4,7] . In dimension 2 and for points in general position, this max-min angle arXiv:1803.11436v1 [cs.CG] 30 Mar 2018 property characterizes Delaunay triangulations and highlights one of their most ∗This work was supported by the ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.
    [Show full text]
  • Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry
    Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry 16 Notes ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL You must have measured the angles between two straight lines. Let us now study the angles made by arcs and chords in a circle and a cyclic quadrilateral. OBJECTIVES After studying this lesson, you will be able to • verify that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle; • prove that angles in the same segment of a circle are equal; • cite examples of concyclic points; • define cyclic quadrilterals; • prove that sum of the opposite angles of a cyclic quadrilateral is 180o; • use properties of cyclic qudrilateral; • solve problems based on Theorems (proved) and solve other numerical problems based on verified properties; • use results of other theorems in solving problems. EXPECTED BACKGROUND KNOWLEDGE • Angles of a triangle • Arc, chord and circumference of a circle • Quadrilateral and its types Mathematics Secondary Course 395 MODULE - 3 Angles in a Circle and Cyclic Quadrilateral Geometry 16.1 ANGLES IN A CIRCLE Central Angle. The angle made at the centre of a circle by the radii at the end points of an arc (or Notes a chord) is called the central angle or angle subtended by an arc (or chord) at the centre. In Fig. 16.1, ∠POQ is the central angle made by arc PRQ. Fig. 16.1 The length of an arc is closely associated with the central angle subtended by the arc. Let us define the “degree measure” of an arc in terms of the central angle.
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Application of Nine Point Circle Theorem
    Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project.
    [Show full text]
  • Construction of Rational Surfaces of Degree 12 in Projective Fourspace
    Construction of Rational Surfaces of Degree 12 in Projective Fourspace Hirotachi Abo Abstract The aim of this paper is to present two different constructions of smooth rational surfaces in projective fourspace with degree 12 and sectional genus 13. In particular, we establish the existences of five different families of smooth rational surfaces in projective fourspace with the prescribed invariants. 1 Introduction Hartshone conjectured that only finitely many components of the Hilbert scheme of surfaces in P4 contain smooth rational surfaces. In 1989, this conjecture was positively solved by Ellingsrud and Peskine [7]. The exact bound for the degree is, however, still open, and hence the question concerning the exact bound motivates us to find smooth rational surfaces in P4. The goal of this paper is to construct five different families of smooth rational surfaces in P4 with degree 12 and sectional genus 13. The rational surfaces in P4 were previously known up to degree 11. In this paper, we present two different constructions of smooth rational surfaces in P4 with the given invariants. Both the constructions are based on the technique of “Beilinson monad”. Let V be a finite-dimensional vector space over a field K and let W be its dual space. The basic idea behind a Beilinson monad is to represent a given coherent sheaf on P(W ) as a homology of a finite complex whose objects are direct sums of bundles of differentials. The differentials in the monad are given by homogeneous matrices over an exterior algebra E = V V . To construct a Beilinson monad for a given coherent sheaf, we typically take the following steps: Determine the type of the Beilinson monad, that is, determine each object, and then find differentials in the monad.
    [Show full text]
  • CIRCLE and SPHERE GEOMETRY. [July
    464 CIRCLE AND SPHERE GEOMETRY. [July, CIRCLE AND SPHERE GEOMETRY. A Treatise on the Circle and the Sphere. By JULIAN LOWELL COOLIDGE. Oxford, the Clarendon Press, 1916. 8vo. 603 pp. AN era of systematizing and indexing produces naturally a desire for brevity. The excess of this desire is a disease, and its remedy must be treatises written, without diffuseness indeed, but with the generous temper which will find room and give proper exposition to true works of art. The circle and the sphere have furnished material for hundreds of students and writers, but their work, even the most valuable, has been hitherto too scattered for appraisement by the average student. Cyclopedias, while indispensable, are tan­ talizing. Circles and spheres have now been rescued from a state of dispersion by Dr. Coolidge's comprehensive lectures. Not a list of results, but a well digested account of theories and methods, sufficiently condensed by judicious choice of position and sequence, is what he has given us for leisurely study and enjoyment. The reader whom the author has in mind might be, well enough, at the outset a college sophomore, or a teacher who has read somewhat beyond the geometry expected for en­ trance. Beyond the sixth chapter, however, or roughly the middle of the book, he must be ready for persevering study in specialized fields. The part most read is therefore likely to be the first four chapters, and a short survey of these is what we shall venture here. After three pages of definitions and conventions the author calls "A truce to these preliminaries!" and plunges into inversion.
    [Show full text]
  • A Brief Note on the Approach to the Conic Sections of a Right Circular Cone from Dynamic Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by EPrints Complutense A brief note on the approach to the conic sections of a right circular cone from dynamic geometry Eugenio Roanes–Lozano Abstract. Nowadays there are different powerful 3D dynamic geometry systems (DGS) such as GeoGebra 5, Calques 3D and Cabri Geometry 3D. An obvious application of this software that has been addressed by several authors is obtaining the conic sections of a right circular cone: the dynamic capabilities of 3D DGS allows to slowly vary the angle of the plane w.r.t. the axis of the cone, thus obtaining the different types of conics. In all the approaches we have found, a cone is firstly constructed and it is cut through variable planes. We propose to perform the construction the other way round: the plane is fixed (in fact it is a very convenient plane: z = 0) and the cone is the moving object. This way the conic is expressed as a function of x and y (instead of as a function of x, y and z). Moreover, if the 3D DGS has algebraic capabilities, it is possible to obtain the implicit equation of the conic. Mathematics Subject Classification (2010). Primary 68U99; Secondary 97G40; Tertiary 68U05. Keywords. Conics, Dynamic Geometry, 3D Geometry, Computer Algebra. 1. Introduction Nowadays there are different powerful 3D dynamic geometry systems (DGS) such as GeoGebra 5 [2], Calques 3D [7, 10] and Cabri Geometry 3D [11]. Focusing on the most widespread one (GeoGebra 5) and conics, there is a “conics” icon in the ToolBar.
    [Show full text]
  • Chapter 9: Conics Section 9.1 Ellipses
    Chapter 9: Conics Section 9.1 Ellipses ..................................................................................................... 579 Section 9.2 Hyperbolas ............................................................................................... 597 Section 9.3 Parabolas and Non-Linear Systems ......................................................... 617 Section 9.4 Conics in Polar Coordinates..................................................................... 630 In this chapter, we will explore a set of shapes defined by a common characteristic: they can all be formed by slicing a cone with a plane. These families of curves have a broad range of applications in physics and astronomy, from describing the shape of your car headlight reflectors to describing the orbits of planets and comets. Section 9.1 Ellipses The National Statuary Hall1 in Washington, D.C. is an oval-shaped room called a whispering chamber because the shape makes it possible for sound to reflect from the walls in a special way. Two people standing in specific places are able to hear each other whispering even though they are far apart. To determine where they should stand, we will need to better understand ellipses. An ellipse is a type of conic section, a shape resulting from intersecting a plane with a cone and looking at the curve where they intersect. They were discovered by the Greek mathematician Menaechmus over two millennia ago. The figure below2 shows two types of conic sections. When a plane is perpendicular to the axis of the cone, the shape of the intersection is a circle. A slightly titled plane creates an oval-shaped conic section called an ellipse. 1 Photo by Gary Palmer, Flickr, CC-BY, https://www.flickr.com/photos/gregpalmer/2157517950 2 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections with plane”, cropped to show only ellipse and circle by L Michaels, CC BY 3.0 This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2020.
    [Show full text]
  • Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol
    S. Ramassamy (2020) “Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol. 2020, No. 3, pp. 813–852 Advance Access Publication March 21, 2018 doi:10.1093/imrn/rny039 Downloaded from https://academic.oup.com/imrn/article-abstract/2020/3/813/4948410 by Indian Institute of Science user on 10 July 2020 Miquel Dynamics for Circle Patterns Sanjay Ramassamy∗ Unité de Mathématiques Pures et Appliquées, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France ∗ Correspondence to be sent to: e-mail: [email protected] We study a new discrete-time dynamical system on circle patterns with the combina- torics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel’s six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve. 1 Introduction This paper is about a conjecturally integrable discrete-time dynamical system on circle patterns. Circle patterns are configurations of circles on a surface with combinatorially prescribed intersections. They have been actively studied since Thurston conjectured that circle packings (a variant of circle patterns where neighboring circles are tangent) provide discrete approximations of Riemann mappings between two simply connected domains [25].
    [Show full text]
  • Circle Geometry
    Circle Geometry The BEST thing about Circle Geometry is…. you are given the Question and (mostly) the Answer as well. You just need to fill in the gaps in between! Mia David MA BSc Dip Ed UOW 24.06.2016 Topic: Circle Geometry Page 1 There are a number of definitions of the parts of a circle which you must know. 1. A circle consists of points which are equidistant from a fixed point (centre) The circle is often referred to as the circumference. 2. A radius is an interval which joins the centre to a point on the circumference. 3. A chord is an interval which joins two points on the circumference. 4. A diameter is a chord which passes through the centre. 5. An arc is a part of the circumference of a circle. 6. A segment is an area which is bounded by an arc and a chord. (We talk of the ALTERNATE segment, as being a segment on the OTHER side of a chord. We also refer to a MAJOR and a MINOR segment, according to the size.) 7. A semicircle is an area bounded by an arc and a diameter. 8. A sector is an area bounded by an arc and two radii. 9. A secant is an interval which intersects the circumference of a circle twice. 10. A tangent is a secant which intersects the circumference twice at the same point. (Usually we just say that a tangent TOUCHES the circle) 11. Concentric circles are circles which have the same centre. 12. Equal circles are circles which have the same radius.
    [Show full text]