Complements to Classic Topics of Circles Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry 1 Ion Patrascu, Florentin Smarandache In the memory of the first author's father Mihail Patrascu and the second author's mother Maria (Marioara) Smarandache, recently passed to eternity... 2 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 3 Ion Patrascu, Florentin Smarandache © 2016 Ion Patrascu & Florentin Smarandache All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners. ISBN 978-1-59973-465-1 4 Complements to Classic Topics of Circles Geometry Contents Introduction ....................................................... 15 Lemoine’s Circles ............................................... 17 1st Theorem. ........................................................... 17 Proof. ................................................................. 17 2nd Theorem. ......................................................... 19 Proof. ................................................................ 19 Remark. ............................................................ 21 References. ........................................................... 22 Lemoine’s Circles Radius Calculus ..................... 23 1st Theorem ........................................................... 23 Proof. ................................................................ 23 Consequences. ................................................... 25 1st Proposition. ...................................................... 25 Proof. ................................................................ 25 2nd Proposition. .................................................... 26 Proof. ................................................................ 27 Remarks. ........................................................... 28 3rd Proposition. ..................................................... 28 Proof. ................................................................ 28 Remark. ............................................................ 29 References. ........................................................... 29 Radical Axis of Lemoine’s Circles ........................ 31 1st Theorem. ........................................................... 31 2nd Theorem. .......................................................... 31 1st Remark. ......................................................... 31 1st Proposition. ...................................................... 32 Proof. ................................................................ 32 5 Ion Patrascu, Florentin Smarandache Comment. .......................................................... 34 2nd Remark. ....................................................... 34 2nd Proposition. .................................................... 34 References. ........................................................... 34 Generating Lemoine’s circles ............................. 35 1st Definition. ........................................................ 35 1st Proposition. ...................................................... 35 2nd Definition. ....................................................... 35 1st Theorem. .......................................................... 36 3rd Definition. ....................................................... 36 1st Lemma. ............................................................ 36 Proof. ................................................................ 36 Remark. ............................................................ 38 2nd Theorem. ......................................................... 38 Proof. ................................................................ 38 Further Remarks. .............................................. 40 References. ........................................................... 40 The Radical Circle of Ex-Inscribed Circles of a Triangle ............................................................. 41 1st Theorem. .......................................................... 41 Proof. ................................................................ 41 2nd Theorem. ......................................................... 43 Proof. ................................................................ 43 Remark. ............................................................ 44 3rd Theorem. ......................................................... 44 Proof. ................................................................ 45 References. ........................................................... 48 The Polars of a Radical Center ........................... 49 1st Theorem. .......................................................... 49 Proof. ................................................................ 50 6 Complements to Classic Topics of Circles Geometry 2nd Theorem. .......................................................... 51 Proof. ................................................................ 52 Remarks. ........................................................... 52 References. ........................................................... 53 Regarding the First Droz-Farny’s Circle ............. 55 1st Theorem. .......................................................... 55 Proof. ................................................................ 55 Remarks. ........................................................... 57 2nd Theorem. ......................................................... 57 Remark. ............................................................ 58 Definition. ............................................................ 58 Remark. ............................................................ 58 3rd Theorem. ......................................................... 58 Proof. ................................................................ 59 Remark. ............................................................ 60 4th Theorem. ......................................................... 60 Proof. ................................................................ 60 Reciprocally. ..................................................... 61 Remark. ............................................................ 62 References. ........................................................... 62 Regarding the Second Droz-Farny’s Circle.......... 63 1st Theorem. .......................................................... 63 Proof. ................................................................ 63 1st Proposition. ...................................................... 65 Proof. ................................................................ 65 Remarks. ........................................................... 66 2nd Theorem. ......................................................... 66 Proof. ................................................................ 67 Reciprocally. ..................................................... 67 Remarks. ........................................................... 68 7 Ion Patrascu, Florentin Smarandache 2nd Proposition. .................................................... 68 Proof. ................................................................ 69 References. ........................................................... 70 Neuberg’s Orthogonal Circles ............................. 71 1st Definition. ......................................................... 71 2nd Definition. ....................................................... 72 3rd Definition. ....................................................... 72 1st Proposition. ...................................................... 72 Proof. ................................................................ 73 Consequence. .................................................... 74 2nd Proposition. .................................................... 74 Proof. ................................................................ 74 4th Definition. ....................................................... 75 3rd Proposition. ..................................................... 75 Proof. ................................................................ 75 Reciprocally. ..................................................... 76 4th Proposition. ..................................................... 76 Proof. ................................................................ 77 References. ........................................................... 78 Lucas’s Inner Circles .......................................... 79 1. Definition of the Lucas’s Inner Circles .......... 79 Definition. ............................................................ 80 2. Calculation of the Radius of the A-Lucas Inner Circle .................................................................... 80 Note. ................................................................. 81 1st Remark. ........................................................ 81 3. Properties of the Lucas’s Inner Circles .......... 81 1st Theorem. .......................................................... 81 Proof. ................................................................ 81 2nd Definition. ......................................................
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • Angle Chasing
    Angle Chasing Ray Li June 12, 2017 1 Facts you should know 1. Let ABC be a triangle and extend BC past C to D: Show that \ACD = \BAC + \ABC: 2. Let ABC be a triangle with \C = 90: Show that the circumcenter is the midpoint of AB: 3. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove that H is the incenter of 4DEF . 4. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove (i) that A; E; F; H lie on a circle diameter AH and (ii) that B; E; F; C lie on a circle with diameter BC. 5. Let ABC be a triangle with circumcenter O and orthocenter H: Show that \BAH = \CAO: 6. Let ABC be a triangle with circumcenter O and orthocenter H and let AH and AO meet the circumcircle at D and E, respectively. Show (i) that H and D are symmetric with respect to BC; and (ii) that H and E are symmetric with respect to the midpoint BC: 7. Let ABC be a triangle with altitudes AD; BE; and CF: Let M be the midpoint of side BC. Show that ME and MF are tangent to the circumcircle of AEF: 8. Let ABC be a triangle with incenter I, A-excenter Ia, and D the midpoint of arc BC not containing A on the circumcircle. Show that DI = DIa = DB = DC: 9. Let ABC be a triangle with incenter I and D the midpoint of arc BC not containing A on the circumcircle.
    [Show full text]
  • Geometric Exercises in Paper Folding
    MATH/STAT. T. SUNDARA ROW S Geometric Exercises in Paper Folding Edited and Revised by WOOSTER WOODRUFF BEMAN PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF MICHIGAK and DAVID EUGENE SMITH PROFESSOR OF MATHEMATICS IN TEACHERS 1 COLLEGE OF COLUMBIA UNIVERSITY WITH 87 ILLUSTRATIONS THIRD EDITION CHICAGO ::: LONDON THE OPEN COURT PUBLISHING COMPANY 1917 & XC? 4255 COPYRIGHT BY THE OPEN COURT PUBLISHING Co, 1901 PRINTED IN THE UNITED STATES OF AMERICA hn HATH EDITORS PREFACE. OUR attention was first attracted to Sundara Row s Geomet rical Exercises in Paper Folding by a reference in Klein s Vor- lesungen iiber ausgezucihlte Fragen der Elementargeometrie. An examination of the book, obtained after many vexatious delays, convinced us of its undoubted merits and of its probable value to American teachers and students of geometry. Accordingly we sought permission of the author to bring out an edition in this country, wnich permission was most generously granted. The purpose of the book is so fully set forth in the author s introduction that we need only to say that it is sure to prove of interest to every wide-awake teacher of geometry from the graded school to the college. The methods are so novel and the results so easily reached that they cannot fail to awaken enthusiasm. Our work as editors in this revision has been confined to some slight modifications of the proofs, some additions in the way of references, and the insertion of a considerable number of half-tone reproductions of actual photographs instead of the line-drawings of the original. W. W.
    [Show full text]
  • Special Isocubics in the Triangle Plane
    Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60.
    [Show full text]
  • Delaunay Triangulations of Points on Circles Arxiv:1803.11436V1 [Cs.CG
    Delaunay Triangulations of Points on Circles∗ Vincent Despr´e † Olivier Devillers† Hugo Parlier‡ Jean-Marc Schlenker‡ April 2, 2018 Abstract Delaunay triangulations of a point set in the Euclidean plane are ubiq- uitous in a number of computational sciences, including computational geometry. Delaunay triangulations are not well defined as soon as 4 or more points are concyclic but since it is not a generic situation, this difficulty is usually handled by using a (symbolic or explicit) perturbation. As an alter- native, we propose to define a canonical triangulation for a set of concyclic points by using a max-min angle characterization of Delaunay triangulations. This point of view leads to a well defined and unique triangulation as long as there are no symmetric quadruples of points. This unique triangulation can be computed in quasi-linear time by a very simple algorithm. 1 Introduction Let P be a set of points in the Euclidean plane. If we assume that P is in general position and in particular do not contain 4 concyclic points, then the Delaunay triangulation DT (P ) is the unique triangulation over P such that the (open) circumdisk of each triangle is empty. DT (P ) has a number of interesting properties. The one that we focus on is called the max-min angle property. For a given triangulation τ, let A(τ) be the list of all the angles of τ sorted from smallest to largest. DT (P ) is the triangulation which maximizes A(τ) for the lexicographical order [4,7] . In dimension 2 and for points in general position, this max-min angle arXiv:1803.11436v1 [cs.CG] 30 Mar 2018 property characterizes Delaunay triangulations and highlights one of their most ∗This work was supported by the ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.
    [Show full text]
  • Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry
    Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry 16 Notes ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL You must have measured the angles between two straight lines. Let us now study the angles made by arcs and chords in a circle and a cyclic quadrilateral. OBJECTIVES After studying this lesson, you will be able to • verify that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle; • prove that angles in the same segment of a circle are equal; • cite examples of concyclic points; • define cyclic quadrilterals; • prove that sum of the opposite angles of a cyclic quadrilateral is 180o; • use properties of cyclic qudrilateral; • solve problems based on Theorems (proved) and solve other numerical problems based on verified properties; • use results of other theorems in solving problems. EXPECTED BACKGROUND KNOWLEDGE • Angles of a triangle • Arc, chord and circumference of a circle • Quadrilateral and its types Mathematics Secondary Course 395 MODULE - 3 Angles in a Circle and Cyclic Quadrilateral Geometry 16.1 ANGLES IN A CIRCLE Central Angle. The angle made at the centre of a circle by the radii at the end points of an arc (or Notes a chord) is called the central angle or angle subtended by an arc (or chord) at the centre. In Fig. 16.1, ∠POQ is the central angle made by arc PRQ. Fig. 16.1 The length of an arc is closely associated with the central angle subtended by the arc. Let us define the “degree measure” of an arc in terms of the central angle.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]
  • Application of Nine Point Circle Theorem
    Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project.
    [Show full text]
  • Chapter 12, Lesson 1
    i8o Chapter 12, Lesson 1 Chapter 12, Lesson 1 •14. They are perpendicular. 15. The longest chord is always a diameter; so Set I (pages 486-487) its length doesn't depend on the location of According to Matthys Levy and Mario Salvador! the point. The length of the shortest chord in their book titled \Nhy Buildings Fall Down depends on how far away from the center (Norton, 1992), the Romans built semicircular the point is; the greater the distance, the arches of the type illustrated in exercises 1 through shorter the chord. 5 that spanned as much as 100 feet. These arches Theorem 56. were used in the bridges of 50,000 miles of roads that the Romans built all the way from Baghdad 16. Perpendicular lines form right angles. to London! • 17. Two points determine a line. The conclusions of exercises 13 through 15 are supported by the fact that a diameter of a circle is •18. All radii of a circle are equal. its longest chord and by symmetry considerations. 19. Reflexive. As the second chord rotates away from the diameter in either direction about the point of 20. HL. intersection, it becomes progressively shorter. 21. Corresponding parts of congruent triangles are equal. Roman Arch. •22. If a line divides a line segment into two 1. Radii. equal parts, it bisects the segment. •2. Chords. Theorem 57. •3. A diameter. 23. If a line bisects a line segment, it divides the 4. Isosceles. Each has two equal sides because segment into two equal parts. the radii of a circle are equal.
    [Show full text]
  • Cyclic Quadrilaterals — the Big Picture Yufei Zhao [email protected]
    Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao Cyclic Quadrilaterals | The Big Picture Yufei Zhao [email protected] An important skill of an olympiad geometer is being able to recognize known configurations. Indeed, many geometry problems are built on a few common themes. In this lecture, we will explore one such configuration. 1 What Do These Problems Have in Common? 1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC and intersects segments AB and BC again at distinct points K and N, respectively. The circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M. ◦ Prove that \OMB = 90 . B M N K O A C 2. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center O, and let C and D be two points on this circle. The line CD meets the line AB at a point M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from ◦ O) of the circumcircles of triangles AOC and DOB. Show that \MKO = 90 . C D K M A O B 3. (USA TST 2007) Triangle ABC is inscribed in circle !. The tangent lines to ! at B and C meet at T . Point S lies on ray BC such that AS ? AT . Points B1 and C1 lies on ray ST (with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar to each other. 1 Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao A B S C C1 B1 T Although these geometric configurations may seem very different at first sight, they are actually very related.
    [Show full text]
  • Journal of Classical Geometry Volume 3 (2014) Index
    Journal of Classical Geometry Volume 3 (2014) Index 1 Artemy A. Sokolov and Maxim D. Uriev, On Brocard’s points in polygons................................. 1 2 Pavel E. Dolgirev, On some properties of confocal conics . 4 3 Paris Pamfilos, Ellipse generation related to orthopoles . 12 4 Danylo Khilko, Some properties of intersection points of Euler line and orthotriangle . 35 5 Pavel A. Kozhevnikov and Alexey A. Zaslavsky On Generalized Brocard Ellipse . ......................... 43 6Problemsection.............................53 7IXGeometricalolympiadinhonourofI.F.Sharygin........56 ON BROCARD’S POINTS IN POLYGONS ARTEMY A. SOKOLOV AND MAXIM D. URIEV Abstract. In this note we present a synthetic proof of the key lemma, defines in the problem of A. A. Zaslavsky. For any given convex quadriaterial ABCD there exists a unique point P such that \P AB = \PBC = \PCD. Let us call this point the Brocard point (Br(ABCD)), and respective angle — Brocard angle (φ(ABCD)) of the bro- ken line ABCD. You can read the proof of this fact in the beginning of the article by Dimitar Belev about the Brocard points in a convex quadrilateral [1]. C B P A D Fig. 1. In the first volume of JCGeometry [2] A. A. Zaslavsky defines the open problem mentioning that φ(ABCD)=φ(DCBA) (namely there are such points P and Q, that \P AB = \PBC = \PCD = \QBA = \QCB = \QDC = φ, moreover OP = OQ and \POQ =2φ)i↵ABCD is cyclic, where O is the circumcenter of ABCD. Synthetic proof of these conditions is provided below. Proof. 1) We have to prove that if φ(ABCD)=φ(DCBA), then ABCD is cyclic.
    [Show full text]
  • IMO 2016 Training Camp 3
    IMO 2016 Training Camp 3 Big guns in geometry 5 March 2016 At this stage you should be familiar with ideas and tricks like angle chasing, similar triangles and cyclic quadrilaterals (with possibly some ratio hacks). But at the IMO level there is no guarantee that these techniques are sufficient to solve contest geometry problems. It is therefore timely to learn more identities and tricks to aid our missions. 1 Harmonics. Ever thought of the complete quadrilateral below? P E F Q B A D C EB FP AD EB FP AC By Ceva's theorem we have · · = 1 and by Menelaus' theorem, · · = EP FA DB EP FA CB −1 (note: the negative ratio simply denotes that C is not on segment AB.) We therefore have: AD AC : = −1:(∗) DB CB We call any family of four collinear points (A; B; C; D) satisfying (*) a harmonic bundle. A pencil P (A; B; C; D) is the collection of lines P A; P B; P C; P D. We name it a har- monic pencil if (A; B; C; D) is harmonic (so the line P (A; B; C; D) above is indeed a har- AD PA sin AP D AC PA sin AP C monic pencil). As = · \ and = · \ we know that DB PB sin \BP D CB PB sin BP C 1 AD AC sin AP D sin AP C sin AP D sin AP C j : j = \ : \ we know that \ = \ iff P (A; B; C; D) DB CB sin \BP D sin \BP C sin \BP D sin \BP C is harmonic pencil (assumming that PC and PD are different lines, of course).
    [Show full text]