Density Functional Study of Sulfur Hexafluoride (SF6) and Its Hydrogen Derivatives Jacek Piechota, Marta Kinga Bruska

Total Page:16

File Type:pdf, Size:1020Kb

Density Functional Study of Sulfur Hexafluoride (SF6) and Its Hydrogen Derivatives Jacek Piechota, Marta Kinga Bruska Density Functional Study of Sulfur Hexafluoride (SF6) and its Hydrogen Derivatives Jacek Piechota, Marta Kinga Bruska To cite this version: Jacek Piechota, Marta Kinga Bruska. Density Functional Study of Sulfur Hexafluoride (SF6) and its Hydrogen Derivatives. Molecular Simulation, Taylor & Francis, 2008, 34 (10-15), pp.1041-1050. 10.1080/08927020802258708. hal-00515048 HAL Id: hal-00515048 https://hal.archives-ouvertes.fr/hal-00515048 Submitted on 4 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. For Peer Review Only Density Functional Study of Sulfur Hexafluoride (SF6) and its Hydrogen Derivatives Journal: Molecular Simulation/Journal of Experimental Nanoscience Manuscript ID: GMOS-2008-0043.R1 Journal: Molecular Simulation Date Submitted by the 15-May-2008 Author: Complete List of Authors: Piechota, Jacek; University of Warsaw, ICMM Bruska, Marta; Jagiellonian University, Department of Chemistry Keywords: sulfur hexafluoride, greenhouse gases, density functional theory Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. SF6_Bruska_Piechota_figures.rar SF6_Bruska_Piechota_update_figures.tar http://mc.manuscriptcentral.com/tandf/jenmol Page 1 of 30 1 2 "Catchline" (i.e. wording at head of first page only) Journal Name in Full 3 Vol. X, No. X, Month 200X, 000–000 4 (PLEASE LEAVE THESE VOLUME/ 5 6 ISSUE DETAILS TO BE ASSIGNED BY 7 JOURNALS PRODUCTION AT 8 A LATER STAGE) 9 10 11 12 The Authors 13 14 (DO NOT INCLUDE THIS AT FIRST SUBMISSION FOR 15 BLIND REVIEW, BUT DO INCUDE IT WHEN PREPARING 16 For Peer THE FINALLYReview ACCEPTED Only MANUSCRIPT FOR SUBM.) 17 Molecular Simulation 18 19 RESEARCH NOTE 20 21 22 Density Functional Study of Sulfur Hexafluoride (SF 6) and its Hydrogen Derivatives. 23 24 25 26 Abstract 27 28 29 Density functional study has been performed for group of compounds derived from sulfur 30 hexafluoride (SF 6) by consecutively substituting fluorine with hydrogen. SF 6 is widely used as the 31 insulating gas in the electrical industry and is recognized as one of the greenhouse gases with 32 33 extraordinary global warming potential. The aim of the present study is to look for potential 34 industrial alternatives to SF 6 as well as to examine mechanisms that can contribute to its faster 35 atmospheric decay. The ground state geometries, binding energies, vibrational spectra, charge 36 distributions, dipole moments, as well as thermodynamic properties for the series of the SF 6-nHn 37 (n=0…6) molecules have been obtained and discussed. For comparison, computational results for 38 39 the SCl 6 molecule have also been included in the present study. 40 41 Keywords : sulfur hexafluoride; greenhouse gases; density functional theory; 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 - 1 - http://mc.manuscriptcentral.com/tandf/jenmol Page 2 of 30 1 2 "Catchline" (i.e. wording at head of first page only) Journal Name in Full 3 Vol. X, No. X, Month 200X, 000–000 4 5 6 7 8 9 10 11 12 13 M. K. Bruska, J. Piechota 14 15 16 For Peer Review Only 17 Molecular Simulation 18 19 20 RESEARCH NOTE 21 22 23 Density Functional Study of Sulfur Hexafluoride (SF 6) and its Hydrogen Derivatives. 24 25 26 27 28 a b* 29 MARTA KINGA BRUSKA AND JACEK PIECHOTA 30 a Department of Chemistry, Jagiellonian University, ul. R. Ingardena 3,30-060 Kraków, Poland 31 b Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawinskiego 5a, 02-106 Warszawa, Poland 32 33 34 35 36 Abstract 37 38 39 Density functional study has been performed for group of compounds derived from sulfur 40 hexafluoride (SF ) by consecutively substituting fluorine with hydrogen. SF is widely used as the 41 6 6 42 insulating gas in the electrical industry and is recognized as one of the greenhouse gases with 43 extraordinary global warming potential. The aim of the present study is to look for potential 44 industrial alternatives to SF 6 as well as to examine mechanisms that can contribute to its faster 45 atmospheric decay. The ground state geometries, binding energies, vibrational spectra, charge 46 distributions, dipole moments, as well as thermodynamic properties for the series of the SF H 47 6-n n 48 (n=0…6) molecules have been obtained and discussed. For comparison, computational results for 49 the SCl 6 molecule have also been included in the present study. 50 51 Keywords : sulfur hexafluoride; greenhouse gases; density functional theory; 52 53 54 55 56 57 58 59 60 _____________________ * Email: [email protected] - 2 - http://mc.manuscriptcentral.com/tandf/jenmol Page 3 of 30 1 2 1. Introduction 3 4 Interest in the sulfur hexafluoride (SF ) system stems both from practical and theoretical 5 6 6 considerations. It is one of the most popular (next to air) insulating gases, with a breakdown 7 strength of about 3 times that of air. It has a number of technologically important properties: it is 8 not flammable and non-toxic; at normal temperatures, it is also non-corrosive, and is fairly inert. 9 That is why SF 6 is commonly used in industry as a gaseous dielectric and as a plasma etching gas in 10 applications such as: circuit breakers, gas-insulated busbar systems, and also for large scale 11 12 scientific applications such as tandem particle accelerators. Other areas of application of SF 6 13 include the magnesium industry to protect molten magnesium from oxidation and potentially 14 violent burning, and semiconductor manufacturing to create circuitry patterns on silicon wafers. 15 Also, SF 6 is a candidate refrigerant to replace the chlorofluorocarbons (CFC's) which are damaging 16 For Peer Review Only the ozone layer. For an extensive review of SF 6 technical applications see, for example, [1] and 17 publications therein. 18 19 On the theoretical side, SF 6 has become a classic molecule for the study of electron 20 attachment at ultralow electron energies. The attachment of low energy electrons to SF 6 results in 21 — — formation of a metastable negative ion by the process: SF 6 + e → SF 6 [2-5]. An understanding of 22 the thermal electron attachment properties and temperature behaviour of rate constant for SF is, in 23 6 24 turn, of importance in the design of gaseous insulators and diffuse discharge switchers. 25 Furthermore, SF 6 has a unique, octahedral symmetry structure, which provides good 26 example of shape resonance phenomena. The infrared active modes of octahedral molecules are of 27 F1u symmetry and ν3 as well as ν4 bands are allowed in absorption [6]. In particular, the region of 28 the ν fundamental near 950 cm -1 has very strong absorption. The bond dissociation energy of SF 29 3 6 30 (to SF 5 + F) is 3.82 eV, but photodissociation is not observed until the photon energy exceeds ~10 31 eV [4]. 32 However, at the same time SF 6 is the most potent greenhouse gas that has been evaluated by 33 the Intergovernmental Panel on Climate Change (IPCC), with a global warming potential (GWP) of 34 22,800 times that of CO 2 when compared over a 100 year period [7]. Two main factors contributing 35 to this extraordinary high value of GWP is strong radiative forcing (0.52 Wm -2ppb-1) and very long 36 37 atmospheric lifetime (3200 years) [8]. In the stratosphere, the highest energy solar photons have an 38 energy of ~6 eV, so it is very unlikely that SF 6 will be photodissociated there. Therefore, although 39 the concentration of SF 6 is still relatively low in the Earth's atmosphere (5.21 ppt) [8], it is one of 40 the greenhouse gases that the Kyoto Protocol seeks to control [9], as even small amounts of SF 6 41 emissions can constitute a significant carbon-equivalent emission tonnage. 42 Apart from destroying ozone layer greenhouse gases that can absorb infrared radiation in the 43 -1 44 so-called “atmospheric window” between the wavelengths of 800 - 1400 cm are of great concern 45 because they are able to trap radiation that would have otherwise been emitted into space — most of 46 the radiation emitted by the earth's surface at wavelengths within in the atmospheric window would 47 have passed through the Earth's atmosphere without heating it. 48 Recently, another compound with extremely strong radiative forcing (of 0.59 Wm -2ppb -1), 49 50 identified as trifluoromethyl sulfur pentafluoride (SF 5CF 3), has been detected in the atmosphere 51 [10,11]. It is supposed that SF 5CF 3 originates as a breakdown product of SF 6 formed by high- 52 voltage discharges in electric industry equipment [10]. Atmospheric lifetime of SF 5CF 3 (~800 53 years) is lower than that of SF 6, but its value of GWP (~17,700) is one of the highest of all other 54 greenhouse gases [7]. 55 56 It is worth noting, however, that the greenhouse gases with the greatest GWP values are the 57 fully fluorinated compounds (FFC’s): CF 4, C 2F6, C 3F8, c-C4F8, SF 6, NF 3 and CHF 3, that are widely 58 used by the semiconductor industry [12].
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Assessment of Portable HAZMAT Sensors for First Responders
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095
    1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095-13-6 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. lndene is acutely toxic with effects on the upper respiratory system (mucous membranes), pulmonary irritation, liver and kidney effects. Molecular Weight (g/mol): 116.15 Synonyms: Indonaphthene U.S. EPA Carcinogenic Classification (IRIS): Not listed on IRIS. PBT: Not listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program. HAP: Not listed as a hazardous air pollutant (HAP) by U.S. EPA. 112r: Not listed under Section 112(r) of the Clean Air Act. ACGIH: TLV: 10 ppm or 47,505 µg/m3. Critical effects include upper respiratory irritation or damage, pulmonary irritation, and liver and kidney effects. HSDB: Listed in the Hazardous Substances Data Bank. Inhalation of indene vapors is expected to cause irritation of mucous membranes. International IARC: Not listed by International Agency for Research on Cancer (IARC). ATSDR (MRL): Not listed by ATSDR. DataSheet Indene.wpd 2/2 Reference Material 1. American Conference of Governmental Industrial Hygienists (ACGIH) 2006. TLVs and BEIs:
    [Show full text]
  • Chemistry of the Noble Gases*
    CHEMISTRY OF THE NOBLE GASES* By Professor K. K. GREE~woon , :.\I.Sc., sc.D .. r".lU.C. University of N ewca.stle 1tpon Tyne The inert gases, or noble gases as they are elements were unsuccessful, and for over now more appropriately called, are a remark­ 60 years they epitomized chemical inertness. able group of elements. The lightest, helium, Indeed, their electron configuration, s2p6, was recognized in the gases of the sun before became known as 'the stable octet,' and this it was isolated on ea.rth as its name (i]A.tos) fotmed the basis of the fit·st electronic theory implies. The first inert gas was isolated in of valency in 1916. Despite this, many 1895 by Ramsay and Rayleigh; it was named people felt that it should be possible to induce argon (apy6s, inert) and occurs to the extent the inert gases to form compounds, and many of 0·93% in the earth's atmosphere. The of the early experiments directed to this end other gases were all isolated before the turn have recently been reviewed.l of the century and were named neon (v€ov, There were several reasons why chemists new), krypton (KpVn'TOV, hidden), xenon believed that the inert gases might form ~€vov, stmnger) and radon (radioactive chemical compounds under the correct con­ emanation). Though they occur much less ditions. For example, the ionization poten­ abundantly than argon they cannot strictly tial of xenon is actually lower than those of be called rare gases; this can be illustrated hydrogen, nitrogen, oxygen, fl uorine and by calculating the volumes occupied a.t s.t.p.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Selenium Hexafluoride INTERIM 1: 11-2007 1 2 3 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (Aegls) 5 for 6 Selenium Hexafluoride 7 (CAS Reg
    Selenium Hexafluoride INTERIM 1: 11-2007 1 2 3 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 5 FOR 6 Selenium Hexafluoride 7 (CAS Reg. No. 7783-79-1) 8 9 Se-F6 10 11 12 13 14 15 16 17 18 19 20 21 22 Selenium Hexafluoride INTERIM 1: 11-2007 1 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 3 FOR 4 SELENIUM HEXAFLUORIDE 5 (CAS Reg. No. 7783-79-1) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 Selenium Hexafluoride INTERIM 1: 11-2007 1 2 3 4 5 PREFACE 6 7 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 8 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 9 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 10 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 11 chemicals. 12 13 AEGLs represent threshold exposure limits for the general public and are applicable to 14 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels C AEGL-1, 15 AEGL-2 and AEGL-3 C are developed for each of five exposure periods (10 and 30 minutes, 1 16 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. 17 The three AEGLs are defined as follows: 18 19 AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 20 cubic meter [ppm or mg/m3]) of a substance above which it is predicted that the general 21 population, including susceptible individuals, could experience notable discomfort, irritation, or 22 certain asymptomatic, non-sensory effects.
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • The Health and Environmental Impacts of Hazardous Wastes
    The health and environmental impacts of hazardous wastes IMPACT PROFILES Final report Prepared for: The Department of the Environment Prepared by: Ascend Waste and Environment Pty Ltd Date::7 June 2015 Geoff Latimer Project Number: Project # 15001AG The health and environmental impacts of hazardous wastes Project # 15001AG Date: 7 June 2015 This report has been prepared for The Department of the Environment in accordance with the terms and conditions of appointment dated 6 January 2015, and is based on the assumptions and exclusions set out in our scope of work. The report must not be reproduced in whole or in part except with the prior consent of Ascend Waste and Environment Pty Ltd and subject to inclusion of an acknowledgement of the source. Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ascend Waste and Environment Pty Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. © Ascend Waste and Environment Pty Ltd VERSION CONTROL RECORD Document File Name Date Issued Version Author Reviewer Draft first profiles for review 11 March 2015 Rev 0 Geoff Latimer Ian Rae 15001AG_AWE_Health Env 27 April 2015 Rev0 Geoff Latimer Ian Rae Impacts draft report rev 0 15001AG_AWE_Health Env 7 June 2015 Rev0 Geoff Latimer Ian Rae Impacts final report rev 0 The health and environmental impacts of hazardous wastes Contents Page 1 Introduction 5 2 Summary report: Australia’s key hazardous waste impacts and risks
    [Show full text]
  • United States Patent Office Patented Mar
    3,373,000 United States Patent Office Patented Mar. 2, 1968 2 3,373,000 monofluoride is also an economical reactant, since it is PROCESS FOR PREPARING TETRAFLUORDES conveniently prepared by the disproportionation of ele AND HEXAFLUOR DES mental chlorine in liquid hydrogen fluoride, thereby avoid James J. Pitts, West Haven, and Albert W. Jache, North ing the use of expensive elemental fluorine. The selective Haven, Conn., assignors to Olin Mathieson Chemical fluorination process of this invention is particularly Sur Corporation, a corporation of Virginia prising and unexpected in view of the prior art which No Drawing. Filed Nov. 1, 1966, Ser. No. 591,079 teaches that chlorine monofluoride adds to a wide variety 9 Claims. (Cl. 23-352) of compounds, thereby acting as a chloro-fluorinating agent. For instance, U.S. Patent 3,035,893 discloses the 10 preparation of sulfur chloride pentafluoride from Sulfur ABSTRACT OF THE DISCLOSURE tetrafluoride and chlorine monofluoride. The tetrafluorides and hexafluorides of sulfur, selenium According to the process of this invention, the tetra and tellurium are provided by reacting chlorine mono fluorides and hexafluorides of sulfur, selenium and tel fluoride with sulfur, selenium, tellurium, metal sulfides, lurium are provided by reacting chlorine monofluoride metal selenides or metal tellurides. The hexafluorides of 15 with a material selected from the group consisting of Sul tungsten, molybdenum and uranium are provided by the fur, selenium, tellurium, metal sulfides, metal selenides reaction of chlorine monofluoride with the metals, their and metal tellurides. The hexafluorides of tungsten, oxides, sulfides and salts containing the metallate anion. molybdenum and uranium are provided by reacting These tetrafluorides and hexafluorides are well-known chlorine monofluoride with a material selected from the compounds, useful as fluorinating agents, gaseous di 20 group consisting of tungsten; molybdenum, uranium; the electrics, sources of high purity metallic powders, etc.
    [Show full text]
  • Cal/OSHA, DOT HAZMAT, EEOC, EPA, HIPAA, IATA, IMDG, TDG, MSHA, OSHA, Australia WHS, and Canada OHS Regulations and Safety Online Training
    ! Cal/OSHA, DOT HAZMAT, EEOC, EPA, HIPAA, IATA, IMDG, TDG, MSHA, OSHA, Australia WHS, and Canada OHS Regulations and Safety Online Training This document is provided as a training aid and may not reflect current laws and regulations. Be sure and consult with the appropriate governing agencies or publication providers listed in the "Resources" section of our website. www.ComplianceTrainingOnline.com ! ! ! ! ! Facebook LinkedIn Twitter Google Plus Website Hazardous Chemicals Handbook Second edition Phillip Carson PhD MSc AMCT CChem FRSC FIOSH Head of Science Support Services, Unilever Research Laboratory, Port Sunlight, UK Clive Mumford BSc PhD DSc CEng MIChemE Consultant Chemical Engineer Oxford Amsterdam Boston London New York Paris San Diego San Francisco Singapore Sydney Tokyo Butterworth-Heinemann An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 First published 1994 Second edition 2002 Copyright © 1994, 2002, Phillip Carson, Clive Mumford. All rights reserved The right of Phillip Carson and Clive Mumford to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]