Calvi, Corsica 2016

Total Page:16

File Type:pdf, Size:1020Kb

Calvi, Corsica 2016 Marine biological excursion University of Innsbruck & Kiel Calvi, Corsica 2016 August 20th – september3rd Pictures: Daniela Spielmann; Fabian Wolf Participants Trainers Students Reinhold Hanel Innsbruck Kiel Bert Hobmayer Mattia Baraldo Shaomin Chen Philip Bertemes Rafael Meichßner Assistant Laura-Sophie Frommelt Alica Ohnesorge Belinda Artes Stefanie Pfeifenberger Serra Örey Jana Ribitsch Nora-Charlotte Pauli Attendee Daniela Spielmann Fabian Wolf Elio Hobmayer Julia Vorhauser Stephanie Waich 1 Design: Philip Bertemes Excursio Contents Introduction ................................................................................................................................................... 3 Daily protocols Algea .............................................................................................................................................................. 5 Boulder Field ................................................................................................................................................ 12 Coralligène ................................................................................................................................................... 18 Fish diversity ................................................................................................................................................ 24 Plankton ....................................................................................................................................................... 39 Macrofauna of the sandy beach .................................................................................................................. 46 Seagrass ....................................................................................................................................................... 55 Girolata & Fango .......................................................................................................................................... 66 Projects Sea urchin development ............................................................................................................................... 74 I) Body axis manipulation of Arbacia lixula .............................................................................................. 75 II) Reaggregation of sea urchin embryos ................................................................................................. 95 III) F-actin dynamics in the sea urchin Arbacia lixula from the fertilized egg to the pluteus larva ...... 106 Fishes of Corsica – Who are they and what are they feeding on? ............................................................... 121 2 Introduction The “station de Recherche Océanographiques et sous Marines” (STARESO) founded by the university of Liege is a marine biological center on the North-Western coast of Corsica that offers direct access to the sea combined with a research facility for scientists and students from all over the world. Here students and scientist are welcome to study the marine environment under various aspects. The station offers two dry and one wet lab as well as sleeping quarters that serve amongst others the University of Innsbruck and Kiel as base for a cooperative marine biological excursion. The course, that takes place every two years, gives students the possibility to get an insights in the biodiversity of the Mediterranean Sea as well as in the existing habitats and their different environmental conditions. Therefore the participants get background information in daily lectures and learn to determine diverse species during snorkeling sessions in the first week. In the second week the students work on individual projects in groups. In the STARESO lab the students are able to perform their own experiments in the field of developmental biology and fish biology. 3 Daily protocols 4 Algea Serra Örey, Rafael Meichßner Introduction Macroalgae are a polyphyletic group of photosynthetic organisms consisting of Phaeophyta (brown algae), Chlorophyta (green algae) and Rhodophyta (red algae). These groups are phylogenetically far apart descending from different unicellular ancestors (Cock et al. 2010). As a result they have different accessory photosynthetic pigments which are responsible for their typical color. From polar to subtropical regions macroalgae dominate shallow benthic areas with hard substrate (Lüning 1985). In places like the island of Corsica with a lot of rocky coastline algae represent the main benthic primary producers of the shallow water ecosystem (Ballesteros 1989). On our excursion to the Marine Biological Station STARESO in the northwest of Corsica we spent one day on exploring the local macroalgal flora. Generally, the ecological niche of an algal species in coastal habitats is defined by its resistance to desiccation on one hand and its light demand on the other hand. Due to these two factors algal communities arrange in girdles of typical, sometimes almost monospecific composition (Lüning 1985). In our study area in Corsica, there were no significant tidal changes to create advantage for desiccation resistant species. Therefore, in Stareso, we expected light to be the main driver and hence macroalgal species to arrange along a light gradient. As light conditions change with depth and also with the morphology of the rocks, we aimed to assess the present algal community with respect to different depth zones and daylight exposure. Methods The explored habitat was a boulder field with larger rocks in adjacent areas, also including a harbor wall. Sampling was done by collecting the algae species by snorkeling. Three depth zones were decided as following: 0-1 m, 1-3 m and 3-5 m. Each zone was sampled by two people twice. During sampling, it was noted if the sampled algae were from a shadowed area or an area highly exposed to direct daylight. Specimens were brought to land, stored in buckets filled with seawater and identified with the help of Riedl (1983). 5 RESULTS There were in total 19 algae species identified during the study. We found four species in all water depth zones that were: Dictyota dichotoma, Halopteris scoparia, Padina pavonica, Udotea petiolata. More than half of the species were specific to their depth zone. The only species never found in shadowed conditions was Chaetomorpha sp.. On the other hand the following species were only found in areas of limited light exposure due to rock structure: Peyssonnelia squamaria, Lithothamnion sp., Caulerpa racemosa, Codium adherens, Codium bursa, Cryptonemia sp., Halimeda tuna, Pseudolithophyllum expansum. Table 1- Total species list with distribution among depths and different light conditions Phylum Class Species Total Light Conditions distribution 0-1m 1m-3 m 3m-5m Ochrophyta Phaeophyceae Dictyota dichotoma All Both Light Light Ochrophyta Phaeophyceae Halopteris scoparia All Both Both Both Ochrophyta Phaeophyceae Padina pavonica All Both Both Light Chlorophyta Ulvophyceae Udotea petiolata All Both Both Both Rhodophyta Florideophyceae Corallina Top Both - - mediterranea Rhodophyta Florideophyceae Jania rubens Top Both - - Rhodophyta Florideophyceae Peyssonnelia Top Dark - - squamaria Chlorophyta Ulvophyceae Chaetomorpha sp. Top-Mid Both Light - Chlorophyta Ulvophyceae Cladophora prolifera Top-Mid Dark Both - Ochrophyta Phaeophyceae Cystoseira sp. Top-Mid Light Light - Rhodophyta Florideophyceae Lithothamnion sp. Mid - Dark - Rhodophyta Florideophyceae Amphiroa rigida Mid-Deep - Dark Both Ochrophyta Phaeophyceae Dictyota linearis Deep - - Light Chlorophyta Ulvophyceae Caulerpa racemosa Deep - - Dark Chlorophyta Ulvophyceae Codium adherens Deep - - Dark Chlorophyta Ulvophyceae Codium bursa Deep - - Dark Rhodophyta Florideophyceae Cryptonemia sp. Deep - - Dark Chlorophyta Ulvophyceae Halimeda tuna Deep - - Dark Rhodophyta Florideophyceae Pseudolithophyllum Deep - - Dark expansum 6 DISCUSSION In general, the results reveal that light is a driving factor for the species distribution on the rocky shore of Corsica, because the species composition differed between sites of different light regime. However, the species number did not change with depth or daylight exposure. There were similar numbers of species (6- 9) in all depth zones as well as in shadowed and light exposed sites in each respective depth zone. The uppermost 30 cm close to the water surface were dominated by Corallina mediterranea, especially on wave-exposed sites (Figure 2). More sheltered sites also showed specimens of Dictyota dichotoma and Jania rubens (Figure 1) Filiform green algae dominate in even more sheltered areas like rock holes (Figure 2). Reasons may be that this species can survive desiccation but doesn´t have a very high light demand and is therefore able to live in holes. On the other hand it may be less resistant to strong water movement and therefore be not able to grow on exposed (and hence sunny) sites. This is a good example for the weakness of the used method, because species composition in areas with different light levels can be explained by other factors (water movement, grazing, substrate type etc.), as well (Ruitton et al. 2000). These factors were not recorded and therefore cannot be part of the analysis. Consequently, the results will be interpreted with respect to light. The reader should keep in mind that other factors can be drivers for the distribution of species, too. Figure 1-: Typical algae community close to the water surface with J. rubens and D. dichotoma 7 Figure 2- C. mediterranea, growing in a hole close
Recommended publications
  • Stomatopoda of Greece: an Annotated Checklist
    Biodiversity Data Journal 8: e47183 doi: 10.3897/BDJ.8.e47183 Taxonomic Paper Stomatopoda of Greece: an annotated checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡§, Nicolas Bailly , Costas Dounas‡ ‡ Hellenic Center for Marine Recearch (HCMR), Heraklion, Greece § WorldFish Center, Los Baños, Philippines Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Eva Chatzinikolaou Received: 09 Oct 2019 | Accepted: 15 Mar 2020 | Published: 26 Mar 2020 Citation: Koulouri P, Gerovasileiou V, Bailly N, Dounas C (2020) Stomatopoda of Greece: an annotated checklist. Biodiversity Data Journal 8: e47183. https://doi.org/10.3897/BDJ.8.e47183 Abstract Background The checklist of Stomatopoda of Greece was developed in the framework of the LifeWatchGreece Research Infrastructure (ESFRI) project, coordinated by the Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) of the Hellenic Centre for Marine Research (HCMR). The application of the Greek Taxon Information System (GTIS) of this project has been used in order to develop a complete checklist of species recorded from the Greek Seas. The objectives of the present study were to update and cross-check all the stomatopod species that are known to occur in the Greek Seas. Inaccuracies and omissions were also investigated, according to literature and current taxonomic status. New information The up-to-date checklist of Stomatopoda of Greece comprises nine species, classified to eight genera and three families. Keywords Stomatopoda, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • A Survey of Gill and Digestive System Parasites of Brownbanded Bambooshark Chiloscyllium Punctatum from the Gulf of Thailand
    A Survey of Gill and Digestive System Parasites of BrownBanded Bambooshark Chiloscyllium punctatum from the Gulf of Thailand Wiriya Chaiyaroj Faculty of Fisheries, Kasetsart University Abstract The species of benthic shark, BrownBanded Bambooshark (Chiloscyllium punctatum) were collected from Exclusive Economic Zone of the Gulf of Thailand. Fish samples were examined both of external and internal parasite. 15 samples of sharks found only 12 sharks that infected with parasites. Two family of endoparasites, family Onchobothrithriidae and family Phyllobothriidae of phylum platyhelminthes were found highest prevalence and mean intensity at gastrointestinal especially at the intestine that unidentified. Three genus of ectoparasites, Eudactylina Gnathia and Caligus were found at the gill area. They had prevalence and mean intensity follow by intestine and that also unidentified species. Introduction Brownbanded Bambooshark (Chiloscyllium punctatum) is the small benthic shark in family Hemiscyllidae and distributed mainly in Southeast Asian water. This species taken in inshore fisheries in Thailand and utilized for human food. Nowadays, their status recognized as “Near Threaten” (Tassapon et al., 2560) The Gulf of Thailand looks like a basin that is an area of sediment from several rivers makes seabed like mud and sand are spread everywhere. (Department of Marine and Coastal Resources, 2013) and benthic sharks are located in the sand or sand along the coast. (Tassapon et al., 2560). In the Gulf of Thailand, the genus of benthic sharks Chiloscyllium, there are 5 species. Chiloscyllium punctatum is the most abundant species in this genus and found in this cruise of M.V.SEAFDEC 2. (Tassanee et al., 2560) that caught by the trawl.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • A New Species of the Gnathiid Isopod, Gnathia Teruyukiae (Crustacea: Malacostraca), from Japan, Parasitizing Elasmobranch Fish
    Bull. Natl. Mus. Nat. Sci., Ser. A, Suppl. 5, pp. 41–51, February 21, 2011 A New Species of the Gnathiid Isopod, Gnathia teruyukiae (Crustacea: Malacostraca), from Japan, Parasitizing Elasmobranch Fish Yuzo Ota Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903–0213 Japan. E-mail: [email protected] Abstract A new species of gnathiid isopod, Gnathia teruyukiae, is described on the basis of lab- oratory reared material moulted from larvae, which parasitized elasmobranch fish caught from off Okinawa Island, Ryukyu Islands. Praniza larvae are also described. It is morphologically most sim- ilar to G. meticola Holdich and Harrison, 1980, but differs in the body length, the mandible length, and the structure of the mouthparts. Key words : ectoparasite, gnathiids, Ryukyu Archipelago, larval morphology. The family Gnathiidae Leach, 1814, contains 2008; Coetzee et al., 2008, 2009; Ferreira et al., over 190 species belonging to 12 genera (Had- 2009). I also have studied gnathiid larvae ec- field et al., 2008). Members of the family are dis- toparasites of elasmobranchs caught by commer- tributed world-wide, and found in intertidal zone cial fisheries in waters around the Ryukyu Archi- to abyssal depths of 4000 m (Camp, 1988; Cohen pelago, southwestern Japan (Ota and Hirose, and Poore, 1994). From Japanese and adjacent 2009a, 2009b). In this paper, a new species, waters, about 30 species in six genera have been Gnathia teruyukiae, is described on the basis of recorded (Shimomura and Tanaka, 2008; Ota and these laboratory reared adult specimens. Hirose, 2009b). Gnathiid isopods exhibit great morphological Materials and Methods differences between the larva, adult male, and adult female (Mouchet, 1928), and undergo a Between April 2004 and September 2009, biphasic life cycle involving parasitic larvae and elasmobranch hosts caught in Nakagusuku Bay non-feeding adults.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Mediterranean Sea
    OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi MEDITERRANEAN The IUCN Red List of Threatened Species™ – Regional Assessment OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi The IUCN Red List of Threatened Species™ – Regional Assessment Compilers: Dania Abdul Malak Mediterranean Species Programme, IUCN Centre for Mediterranean Cooperation, calle Marie Curie 22, 29590 Campanillas (Parque Tecnológico de Andalucía), Málaga, Spain Suzanne R. Livingstone Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, c/o Conservation International, Arlington, VA 22202, USA David Pollard Applied Marine Conservation Ecology, 7/86 Darling Street, Balmain East, New South Wales 2041, Australia; Research Associate, Department of Ichthyology, Australian Museum, Sydney, Australia Beth A. Polidoro Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Annabelle Cuttelod Red List Unit, IUCN Species Programme, 219c Huntingdon Road, Cambridge CB3 0DL,UK Michel Bariche Biology Departement, American University of Beirut, Beirut, Lebanon Murat Bilecenoglu Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydin, Turkey Kent E. Carpenter Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Bruce B.
    [Show full text]
  • Teleostei, Gobiesocidae)
    A peer-reviewed open-access journal ZooKeys A864: new 35–65 genus (2019) and two new species of miniature clingfishes from temperate southern Australia 35 doi: 10.3897/zookeys.864.34521 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae) Kevin W. Conway1,2, Glenn I. Moore3,4, Adam P. Summers5,6 1 Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX 77843, USA 2 Research Associate, Ichthyology, Australian Museum Research Institute, 1 William Street, Sydney, NSW 2010, Australia 3 Fish Section, Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49 Welshpool DC WA 6986, Australia 4 School of Biolo- gical Sciences, University of Western Australia, Nedlands, WA 6907, Australia 5 Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA 6 Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA Corresponding author: Kevin W. Conway ([email protected]) Academic editor: David Morgan | Received 15 March 2019 | Accepted 31 May 2019 | Published 15 July 2019 http://zoobank.org/5B236AA0-725A-478D-96D4-6B8F366126D4 Citation: Conway KW, Moore GI, Summers AP (2019) A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae). ZooKeys 864: 35–65. https://doi.org/10.3897/ zookeys.864.34521 Abstract A new genus and two new species of miniature clingfishes are described based on specimens collected from dense stands of macroalgae in intertidal and shallow subtidal areas along the coast of southern Australia.
    [Show full text]
  • Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae). Richard Patrick Cody Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Cody, Richard Patrick, "Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae)." (1996). LSU Historical Dissertations and Theses. 6180. https://digitalcommons.lsu.edu/gradschool_disstheses/6180 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Victor Buchet
    Master‘s thesis Impact assessment of invasive flora species in Posidonia oceanica meadows on fish assemblage: an influence on local fisheries? The case study of Lipsi Island, Greece. Victor Buchet Advisor: Michael Honeth University of Akureyri Faculty of Business and Science University Centre of the Westfjords Master of Resource Management: Coastal and Marine Management Ísafjörður, September 2014 Supervisory Committee Advisor: - Micheal Honeth, Tobacco Caye Marine Station, Belize. Reader: - Zoi I. Konstantinou, MSc. - Ph.D. Program Director: - Dagný Arnarsdóttir, MSc. Victor Buchet Impact assessment of invasive flora species in Posidonia oceanica meadows on fish assemblage: an influence on local fisheries? The case study of Lipsi Island, Greece. 45 ECTS thesis submitted in partial fulfilment of a Master of Resource Management degree in Coastal and Marine Management at the University Centre of the Westfjords, Suðurgata 12, 400 Ísafjörður, Iceland Degree accredited by the University of Akureyri, Faculty of Business and Science, Borgir, 600 Akureyri, Iceland Copyright © 2014 Buchet All rights reserved Printing: Háskólaprent, Reykjavík, September 2014 ii Declaration I hereby confirm that I am the sole author of this thesis and it is a product of my own academic research. Victor Buchet Student‘s name iii Abstract Seagrasses are one of the most valuable coastal ecosystems with regards to biodiversity and ecological services, whose diminishing presence plays a significant role in the availability of resources for local communities and human well-being. At the same time, Invasive Alien Species (IAS) are considered as one of the biggest threats to marine worldwide biodiversity. In the Mediterranean, the issue of IAS is one which merits immediate attention; where habitat alteration caused by the human-mediated arrival of new species is a common concern.
    [Show full text]
  • Advancing Systematic Conservation Planning in the Mediterranean Sea
    Advancing systematic conservation planning in the Mediterranean Sea Tessa Kate Mazor A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 School of Biological Sciences Abstract Marine biodiversity is globally declining due to a plethora of anthropogenic threats. Some of these threats are local, such as light pollution and coastal development, while other threats such as climate change operate at larger spatial scales. A range of conservation actions need to occur to effectively mitigate these mounting threats. Due to constraints on time and money for conservation actions we must set spatial priorities. These priorities need to achieve conservation goals and have a high chance of success. The aim of this thesis is to develop approaches that improve the spatial prioritisation of marine biodiversity conservation. Implementation of conservation plans is largely dependent on the cohesion of conservation objectives within the larger economic and social context that it lies within. In this thesis, I use the complex setting of the Mediterranean Sea to explore and propose innovative systematic prioritisation approaches. The Mediterranean Sea is a global biodiversity hotspot surrounded by over twenty countries. In this region threats to biodiversity and ecosystems are high and regional conservation plans based on systematic planning are still limited, providing an ideal system for investigating novel conservation planning approaches. This thesis is composed of seven chapters, which address three key themes for improving spatial conservation prioritisation. Chapter 1 is a broad introduction to the thesis. This chapter examines previous applications of conservation planning and prioritisation, highlighting gaps and limitations of current approaches.
    [Show full text]