Understanding and Manipulating Primary Cell Walls in Plant Cell Suspension Cultures
Total Page:16
File Type:pdf, Size:1020Kb
Understanding and manipulating primary cell walls in plant cell suspension cultures Felicia Leijon Doctoral Thesis in Biotechnology School of Engineering Sciences in Chemistry, Biotechnology and Health Royal Institute of Technology Stockholm, Sweden 2019 © Felicia Leijon, Stockholm, 2019 TRITA-CBH-FOU-2019:2 ISBN 978-91-7873-074-2 KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Royal Institute of Technology AlbaNova University Center 106 91 Stockholm Sweden Printed by Universitetsservice US-AB, Stockholm 2019 Abstract The cell wall is required for many aspects of plant function and development. It is also an accessible and renewable resource utilized both in unrefined forms and as raw material for further development. Increased knowledge regarding cell wall structure and components will contribute to better utilization of plants and the resources they provide. In this thesis aspects of the primary cell wall of Populus trichocarpa and Nicotiana tabacum are explored. In Publication I a method for isolation and biochemical characterization of plant glycosyltransferases using a spectrophotometric or a radiometric assay was optimized. The radiometric assay was applied in Publication II where the proteome of the plasmodesmata isolated from P. trichocarpa was analyzed. Proteins identified belonged to functional classes such as “transport”, “signalling” and “stress responses”. Plasmodesmata-enriched fractions had high levels of callose synthase activity under ion depleted conditions as well as with calcium present. The second part of the thesis comprises the alteration of the cell wall of N. tabacum cells and A. thaliana plants through in vivo expression of a carbohydrate binding module (CBM) (Publication III). In tobacco this resulted in cell walls with loose ultrastructure containing an increased proportion of 1,4-β-glucans. The cell walls were more susceptible to saccharification, possibly due to changes in the structure of cellulose or xyloglucan. Arabidopsis plants showed increased saccharification after mild pretreatment, suggesting that heterologous expression of CBMs is a promising method for cell wall engineering. In Publication IV cellulose microfibrils (CMFs) and nanocrystals (CNCs) were extracted from the transgenic cells. CNC preparation resulted in higher yields and longer CNCs. Nanopapers prepared from the CMFs of the CBM line demonstrated enhanced strength and toughness. Thus, changes to the ordered regions of cellulose were suggested to take place due to CBM expression. Keywords: Callose synthase, carbohydrate-binding module, cell wall engineering, cellulose microfibril, cellulose nanocrystal, glycosyltransferase, mass spectrometry, plasmodesmata, Populus, primary cell wall, radiometric assay, spectrophotometric assay. i Sammanfattning Cellväggen har en avgörande roll för många aspekter av funktion och utveckling hos växtcellen. Den utgör en tillgänglig och förnybar resurs både i sin obearbetade form och som råmaterial för vidare förädling. Ökad kunskap rörande cellväggens struktur och sammansättning skulle därför bidra till bättre nyttjande av växter och de råvaror de tillhandahåller. I den här avhandlingen undersöks olika aspekter av den primära cellväggen hos Populus trichocarpa och Nicotiana tabacum. I Publikation I optimeras en spektrofotometrisk och en radiometrisk metod för biokemisk karakterisering av gykosyltransferaser från växter. Den radiometriska metoden tillämpas sedan i Publikation II där proteomet hos plasmodesmata från P. trichocarpa celler kartlades. Identifierade proteiner tillhörde funktionella klasser så som ”transport”, ”signalering” och ”stress”. Plasmodesmata anrikade membranfraktioner hade förhöjda nivåer av kallos-syntas aktivitet både vid frånvaro av joner och med kalcium. Den andra delen av avhandlingen består av in vivo uttryck av en kolhydratbindande modul (CBM) i tobak och Arabidopsis plantor för att introducera förändringar i cellväggen (Publikation III). Detta resulterade i cellväggar med porös ultrastruktur innehållande mer 1,4-β- glukaner. Cellväggarna var lättare att bryta ner till kolhydratmonomerer vilket kan bero på att strukturen hos cellulosa eller xyloglukan förändrats. Arabidopsis plantor var också lättare att bryta ner efter en mild förbehandling vilket tyder på att heterologt uttryck av CBM är en lovande metod för att manipulera cellväggen. I Publikation IV extraherades mikrofibriller av cellulosa och nanokristallin cellulosa från de transgena tobakscellerna. Framställningen av nanokristallin cellulosa från celler som uttryckte CBM gav högre utbyte och kristallerna var längre. Nanopapper tillverkat från mikrofibrillerna visade på ökad styrka och seghet. Detta tolkades som att uttrycket av CBM hade lett till förändringar i de organiserade regionerna av cellulosa. Nyckelord: Glykosyltransferas, kallos-syntas, kolhydratbindande modul, masspektrometri, cellulosa mikrofibriller, nanokristallin cellulosa, plasmodesmata, Populus, primär cellvägg, radiometrisk analys, spektrofotometrisk analys. ii List of Publications Publication I: Brown, C., Leijon, F., and Bulone, V. (2012). Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat. Protoc. 7, 1634-1650. Publication II: Leijon, F., Melzer, M., Zhou, Q., Srivastava, V., and Bulone, V. (2018). Proteomic analysis of plasmodesmata from Populus cell suspension cultures in relation with callose biosynthesis. Front. Plant Sci. 9, 1681. Publication III: Leijon, F.*, Melida, H.*, Melzer, M., Larsson, T., Srivastava, V., Gomez, L., Guerriero, G., McQeen-Mason, S., and Bulone, V. The effect of carbohydrate-binding modules (CBMs) on plant cell wall properties: an in vivo approach. Manuscript. Publication IV: Butchosa, N., Leijon, F., Bulone, V., and Zhou, Q. (2018). Stronger cellulose microfibrils network structure through the expression of cellulose-binding modules in plant primary cell walls. Submitted to Cellulose. *Both authors contributed equally to the work. iii The Author´s Contribution Publication I: Felicia Leijon performed optimization experiments. Publication II: Felicia Leijon enriched membrane fractions, performed activity assays, product characterization and prepared samples for mass-spectrometric analysis. She also performed data analysis and contributed to the writing of the manuscript. Publication III: Felicia Leijon performed plant transformation, extraction of cell wall and cell wall carbohydrates, growth studies, xyloglucan assay, localisation studies, PCR, qPCR and contributed to the writing of the manuscript. Publication IV: Felicia Leijon performed plant transformation and preparation of plant cell cultures. She also contributed to the extraction of cellulose and preparation and testing of the nanopapers. iv List of Abbreviations BcsA Bacterial cellulose synthase CAZy Carbohydrate active enzymes CalS Callose Synthase CBM Carbohydrate-binding module CesA Cellulose synthase CipA Cellulosome-integrating protein A CMF Cellulose microfibril CNC Cellulose nanocrystal CNF Cellulose nanofibril DP Degree of polymerization DRM Detergent-resistant microdomain ER Endoplasmic reticulum GC-MS Gas chromatography–mass spectrometry GH Glycoside hydrolase GRP Glycine-rich protein Gsl Glucan synthase like GT Glycosyltransferase HPAEC High-performance anion-exchange chromatography HRGP Hydroxyproline-rich glycoprotein LPMO lytic polysaccharide monooxygenase MS Mass spectrometry NAD Nicotinamide adenine dinucleotide NDP Nucleoside diphosphate PRP Proline-rich protein PM Plasma membrane PD Plasmodesmata ROP Regulation of cell polarity protein SEL Size exclusion limit SuSy Sucrose synthase TC Terminal complex TMD Transmembrane domain UGT UDP-glucose transferring protein WT Wild type v Contents 1. Introduction ...................................................................................... 1 1.1. The plant cell wall ............................................................................ 2 1.1.1. Cell wall structure................................................................... 3 Middle lamella and pectins ................................................................ 3 Primary cell wall ................................................................................. 3 Secondary cell wall ............................................................................ 5 1.1.2. Cell wall growth ...................................................................... 6 1.1.3. The plasma membrane and the plasmodesmata and their relationship with the cell wall .................................................. 7 Plasma membrane ............................................................................. 7 Plasmodesmata ................................................................................. 7 1.1.4. Model organisms used for studying the plant cell wall .......... 9 Plant cell suspension cultures ......................................................... 11 1.2. Cell wall polysaccharides - Structure and function ................... 12 1.2.1. Cellulose .............................................................................. 13 Nanocellulose .................................................................................. 15 1.2.2. Callose ................................................................................. 17 1.2.3. Xyloglucan ........................................................................... 18 1.3. Biosynthesis of cell wall polysaccharides .................................. 21 1.3.1. Classification