The Fish Larva: a Transitional Life Form, the Foundation for Aquaculture and Fisheries

Total Page:16

File Type:pdf, Size:1020Kb

The Fish Larva: a Transitional Life Form, the Foundation for Aquaculture and Fisheries The fish larva: a transitional life form, the foundation for aquaculture and fisheries Report from a working group on research on early life stages of fish Large-scale Programmes Aquaculture – An Industry in Growth The fish larva: a transitional life form, the foundation for aquaculture and fisheries Report on research on early life stages of fish © The Research Council of Norway 2009 The Research Council of Norway P.O.Box 2700 St. Hanshaugen N–0131 OSLO Telephone: +47 22 03 70 00 Telefax: +47 22 03 70 01 [email protected] www.forskningsradet.no/english The report can be ordered at: www.forskningsradet.no/publikasjoner or green number telefax: +47 800 83 001 English translation: Darren McKellep Design cover: Design et cetera Photo cover: per Eide, Samfoto, Terje van der Meeren (Start-fed cod larva) Printing: Allkkopi Number of copies: 300 Oslo, June 2009 ISBN 978-82-12-02681-0 (printed version) ISBN 978-82-12-02682-7 (pdf) 2 Preface Knowledge about early life stages in fish – eggs, larvae, fry and smolts – is critical for a number of high-priority areas in aquaculture research, both in Norway and abroad. Experience has shown that major bottlenecks occur in the early life stages, slowing efforts to commercialise new production species. As a rule, stringent requirements in terms of nutrition and physical/chemical/microbial environment must be met to ensure proper development and high survival rates during the early life stages. The causes of permanent malformations often arise in the early stages of development, to the detriment of fish welfare and performance in production. Regarding wild stocks, basic knowledge about early life stages may provide insight into how the fish adapt to their environment and survive under various conditions. Several programmes at the Research Council are involved in research on the early life stages in fish, and knowledge in this area may benefit trade and industry as well as the government administration. The challenge to Norwegian researchers is to conduct research of high international calibre and to be considered attractive partners for collaboration in international research groups. Against this background, the Aquaculture programme – in cooperation with the Oceans and Coastal Areas (HAVKYST) programme, the FUGE programme (Functional Genomics in Norway), and Independent Basic Research Projects (researcher initiated) in Biology and Biomedicine (FRIBIO) – appointed a working group to give an account of the state-of-the-art of research on the early life stages in fish. The working group is comprised of the following members: Jon Vidar Helvik, University of Bergen (Professor; Committee Chair) Kristin Hamre, National Institute of Nutrition and Seafood Research (NIFES) (Senior Scientist) Ivar Hordvik, University of Bergen (Professor) Terje van der Meeren, Institute of Marine Research, Bergen (Senior Scientist) Helge Ressem, Norwegian Seafood Federation / Profunda AS (Manager) Manfred Schartl, University of Würzburg (Professor) Helge Tveiten, Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Tromsø (Senior Scientist) Gunvor Øie, SINTEF Fisheries and Aquaculture, Trondheim (Senior Scientist) Harald Sveier, Research Council of Norway (Committee Secretary) The working group commenced its work in May 2008 and submitted its report in April 2009. The working group’s efforts are much appreciated. Oslo, June 2009 3 Content The fish larva: a transitional life form, the foundation for aquaculture and fisheries ..................... 1 Report on research on early life stages of fish ......................................................................... 1 Preface.............................................................................................................................................. 3 Content............................................................................................................................................ 4 1 Mandate......................................................................................................................................... 5 1.1 Mandate.................................................................................................................................. 5 1.2 The working group ................................................................................................................. 5 1.3 External contributors .............................................................................................................. 6 2 Summary ....................................................................................................................................... 7 3 Sammendrag.................................................................................................................................. 9 4 Vision .......................................................................................................................................... 11 5 Background ................................................................................................................................. 12 6 Status and challenges................................................................................................................... 14 6.1 Juvenile production in aquaculture....................................................................................... 14 6.2 The natural ecosystem.......................................................................................................... 16 6.3 Biological processes............................................................................................................. 17 6.3.1 Early development, maternal effects and endocrinology .............................................. 18 6.3.2 Development and function of fish sensory system........................................................ 19 6.3.3 Brain and neuroendocrine system ................................................................................. 19 6.3.4 Behaviour ...................................................................................................................... 20 6.3.5 Buoyancy and Osmoregulation ..................................................................................... 20 6.3.6 Respiration and excretion.............................................................................................. 21 6.3.7 Reproduction in fish: Focus on germ line and early gonadal development .................. 22 6.3.8 Development of the digestion system ........................................................................... 22 6.3.9 Muscle development...................................................................................................... 22 6.3.10 Skin and pigmentation................................................................................................. 23 6.3.11 Development of bone .................................................................................................. 23 6.3.12 Development of the immune system in fish................................................................ 24 6.4 Nutritional and environmental factors.................................................................................. 24 6.4.1 Nutrition ........................................................................................................................ 24 6.4.2 Microbiological factors ................................................................................................. 25 6.4.3 Physical factors.............................................................................................................. 26 6.4.4 Chemical factors............................................................................................................ 27 6.4.5 Antropogenic factors ..................................................................................................... 28 7 Research resources ...................................................................................................................... 29 7.1 Extensive/intensive systems.................................................................................................29 7.1.1 Production systems........................................................................................................29 7.1.2 Feed organisms.............................................................................................................. 30 7.2 Model species and marine fish development ....................................................................... 31 7.3 GenoFisk: Genomic platform for cod and salmon ............................................................... 32 8 Recommendations and strategies ................................................................................................34 8.1 Goal ...................................................................................................................................... 34 8.2 Strategy................................................................................................................................. 34 8.3 Organisation ......................................................................................................................... 34 8.3.1 First year........................................................................................................................ 36 8.3.2 Short-term (1-5 years) ................................................................................................... 36 8.3.3 Long-term (1-10 years) ................................................................................................
Recommended publications
  • Full Text in Pdf Format
    Vol. 1: 117–132, 2015 SEXUALITY AND EARLY DEVELOPMENT IN AQUATIC ORGANISMS Published online June 11 doi: 10.3354/sedao00012 Sex Early Dev Aquat Org OPENPEN ACCESSCCESS Sexual development and maturity scale for the angel shark Squatina squatina (Elasmobranchii: Squatinidae), with comments on the adequacy of general maturity scales Filip Osaer1,2,3,*, Krupskaya Narváez1,2,3, José G. Pajuelo2, José M. Lorenzo2 1ELASMOCAN, Asociación Canaria para la Investigación y Conservación de los Elasmobranquios, 35001 Las Palmas de Gran Canaria, Spain 2Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Edificio de Ciencias Básicas, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain 3Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Carrera 60A No 11−39, Cali, Colombia ABSTRACT: This paper contributes to the reproductive biology of the genus Squatina and aims to complement the criteria, uniformity and adaptable staging of sexual maturity scales for elasmo- branchs based on data from the angel shark S. squatina captured near the island of Gran Canaria (Canary Islands, Central-East Atlantic). Both sexes presented a paired reproductive tract with both sides active and asymmetric gonad development. Microscopic and macroscopic observations of the testes were consistent and indicated seasonality of spermatogenesis. The spermatocyst de - velopment pattern in mature individuals could not be assigned to any of the categories described in the literature. The ovaries−epigonal organ association was of the external type. Although all Squatinidae share a conservative morphology, they show differences across species in the func- tionality of the paired reproductive tract, seasonality of spermatogenesis, coiled spermatozoa and the presence of egg candles.
    [Show full text]
  • Zooplankton and Ichthyoplankton Distribution on the Southern Brazilian Shelf: an Overview
    sm70n2189-2006 25/5/06 15:15 Página 189 SCIENTIA MARINA 70 (2) June 2006, 189-202, Barcelona (Spain) ISSN: 0214-8358 Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview RUBENS M. LOPES1, MARIO KATSURAGAWA1, JUNE F. DIAS1, MONICA A. MONTÚ2(†), JOSÉ H. MUELBERT2, CHARLES GORRI2 and FREDERICO P. BRANDINI3 1 Oceanographic Institute, Dept. of Biological Oceanography, University of São Paulo, São Paulo, 05508-900, Brazil. E-mail: [email protected] 2 Federal University of Rio Grande, Rio Grande, 96201-900, Brazil. 3 Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, 83255-000, Brazil. (†) Deceased SUMMARY: The southern Brazilian coast is the major fishery ground for the Brazilian sardine (Sardinella brasiliensis), a species responsible for up to 40% of marine fish catches in the region. Fish spawning and recruitment are locally influenced by seasonal advection of nutrient-rich waters from both inshore and offshore sources. Plankton communities are otherwise controlled by regenerative processes related to the oligotrophic nature of the Tropical Water from the Brazil Current. As recorded in other continental margins, zooplankton species diversity increases towards outer shelf and open ocean waters. Peaks of zooplankton biomass and ichthyoplankton abundance are frequent on the inner shelf, either at upwelling sites or off large estuarine systems. However, meandering features of the Brazil Current provide an additional mechanism of upward motion of the cold and nutrient-rich South Atlantic Central Water, increasing phyto- and zooplankton biomass and produc- tion on mid- and outer shelves. Cold neritic waters originating off Argentina, and subtropical waters from the Subtropical Convergence exert a strong seasonal influence on zooplankton and ichthyoplankton distribution towards more southern areas.
    [Show full text]
  • Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
    Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1.
    [Show full text]
  • Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir
    Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir M. Clint Lloyd, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 J. Wesley Neal, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 Abstract: Age-0 fish sampling is an important tool for predicting recruitment success and year-class strength of cohorts in fish populations. In Puerto Rico, limited research has been conducted on age-0 fish sampling with no studies addressing reservoir systems. In this study, we compared the efficacy of passively-fished light traps and actively-fished push nets for sampling the limnetic age-0 fish community in a tropical reservoir. Diversity of catch between push nets and light traps were similar, although species composition of catches differed between gears (pseudo-F = 32.21, df =1,23, P < 0.001) and among seasons (pseudo-F = 4.29, df = 3,23, P < 0.006). Push-net catches were dominated by threadfin shad (Dorosoma petenense), comprising 94.2% of total catch. Conversely, light traps collected primarily channel catfish Ictalurus( punctatus; 76.8%), with threadfin shad comprising only 13.8% of the sample. Light-trap catches had less species diversity and evenness compared to push nets, consequently their efficiency may be limited to presence/ absence of species. These two gears sampled different components of the age-0 fish community and therefore, gear selection should be based on- re search goals, with push nets an ideal gear for threadfin shad age-0 fish sampling, and light traps more appropriate for community sampling.
    [Show full text]
  • Fish Passage Engineering Design Criteria 2019
    FISH PASSAGE ENGINEERING DESIGN CRITERIA 2019 37.2’ U.S. Fish and Wildlife Service Northeast Region June 2019 Fish and Aquatic Conservation, Fish Passage Engineering Ecological Services, Conservation Planning Assistance United States Fish and Wildlife Service Region 5 FISH PASSAGE ENGINEERING DESIGN CRITERIA June 2019 This manual replaces all previous editions of the Fish Passage Engineering Design Criteria issued by the U.S. Fish and Wildlife Service Region 5 Suggested citation: USFWS (U.S. Fish and Wildlife Service). 2019. Fish Passage Engineering Design Criteria. USFWS, Northeast Region R5, Hadley, Massachusetts. USFWS R5 Fish Passage Engineering Design Criteria June 2019 USFWS R5 Fish Passage Engineering Design Criteria June 2019 Contents List of Figures ................................................................................................................................ ix List of Tables .................................................................................................................................. x List of Equations ............................................................................................................................ xi List of Appendices ........................................................................................................................ xii 1 Scope of this Document ....................................................................................................... 1-1 1.1 Role of the USFWS Region 5 Fish Passage Engineering ............................................
    [Show full text]
  • Visceral and Cutaneous Larva Migrans PAUL C
    Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Evolution of Direct-Developing Larvae: Selection Vs Loss Margaret Snoke Smith,1 Kirk S
    Hypotheses Evolution of direct-developing larvae: selection vs loss Margaret Snoke Smith,1 Kirk S. Zigler,2 and Rudolf A. Raff1,3* Summary echinoderms, sea urchins, reveal that a majority of sea urchin Observations of a sea urchin larvae show that most species exhibit one of two life history strategies (Fig. 1).(10) species adopt one of two life history strategies. One strategy is to make numerous small eggs, which develop One strategy is to make many small eggs that develop into a into a larva with a required feeding period in the water larva that must feed and grow for weeks or months in the water column before metamorphosis. In contrast, the second column before metamorphosis. In the water column, these strategy is to make fewer large eggs with a larva that does larvae are dependent on plankton abundance for food and are not feed, which reduces the time to metamorphosis and subject to high levels of predation.(11) The other strategy thus the time spent in the water column. The larvae associated with each strategy have distinct morpholo- involves increasing egg size and maternal provisioning, which gies and developmental processes that reflect their decreases the reliance on planktonic food sources and the feeding requirements, so that those that feed exhibit time to metamorphosis, thus minimizing larval mortality. indirect development with a complex larva, and those that However, assuming finite resources for egg production, do not feed form a morphologically simplified larva and increasing egg size also reduces the total number of eggs exhibit direct development. Phylogenetic studies show that, in sea urchins, a feeding larva, the pluteus, is the produced.
    [Show full text]
  • Hookworm-Related Cutaneous Larva Migrans
    326 Hookworm-Related Cutaneous Larva Migrans Patrick Hochedez , MD , and Eric Caumes , MD Département des Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, Paris, France DOI: 10.1111/j.1708-8305.2007.00148.x Downloaded from https://academic.oup.com/jtm/article/14/5/326/1808671 by guest on 27 September 2021 utaneous larva migrans (CLM) is the most fre- Risk factors for developing HrCLM have specifi - Cquent travel-associated skin disease of tropical cally been investigated in one outbreak in Canadian origin. 1,2 This dermatosis fi rst described as CLM by tourists: less frequent use of protective footwear Lee in 1874 was later attributed to the subcutane- while walking on the beach was signifi cantly associ- ous migration of Ancylostoma larvae by White and ated with a higher risk of developing the disease, Dove in 1929. 3,4 Since then, this skin disease has also with a risk ratio of 4. Moreover, affected patients been called creeping eruption, creeping verminous were somewhat younger than unaffected travelers dermatitis, sand worm eruption, or plumber ’ s itch, (36.9 vs 41.2 yr, p = 0.014). There was no correla- which adds to the confusion. It has been suggested tion between the reported amount of time spent on to name this disease hookworm-related cutaneous the beach and the risk of developing CLM. Consid- larva migrans (HrCLM).5 ering animals in the neighborhood, 90% of the Although frequent, this tropical dermatosis is travelers in that study reported seeing cats on the not suffi ciently well known by Western physicians, beach and around the hotel area, and only 1.5% and this can delay diagnosis and effective treatment.
    [Show full text]
  • The Zebrafish Anatomy and Stage Ontologies: Representing the Anatomy and Development of Danio Rerio
    Van Slyke et al. Journal of Biomedical Semantics 2014, 5:12 http://www.jbiomedsem.com/content/5/1/12 JOURNAL OF BIOMEDICAL SEMANTICS RESEARCH Open Access The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio Ceri E Van Slyke1*†, Yvonne M Bradford1*†, Monte Westerfield1,2 and Melissa A Haendel3 Abstract Background: The Zebrafish Anatomy Ontology (ZFA) is an OBO Foundry ontology that is used in conjunction with the Zebrafish Stage Ontology (ZFS) to describe the gross and cellular anatomy and development of the zebrafish, Danio rerio, from single cell zygote to adult. The zebrafish model organism database (ZFIN) uses the ZFA and ZFS to annotate phenotype and gene expression data from the primary literature and from contributed data sets. Results: The ZFA models anatomy and development with a subclass hierarchy, a partonomy, and a developmental hierarchy and with relationships to the ZFS that define the stages during which each anatomical entity exists. The ZFA and ZFS are developed utilizing OBO Foundry principles to ensure orthogonality, accessibility, and interoperability. The ZFA has 2860 classes representing a diversity of anatomical structures from different anatomical systems and from different stages of development. Conclusions: The ZFA describes zebrafish anatomy and development semantically for the purposes of annotating gene expression and anatomical phenotypes. The ontology and the data have been used by other resources to perform cross-species queries of gene expression and phenotype data, providing insights into genetic relationships, morphological evolution, and models of human disease. Background function, development, and evolution. ZFIN, the zebrafish Zebrafish (Danio rerio) share many anatomical and physio- model organism database [10] manually curates these dis- logical characteristics with other vertebrates, including parate data obtained from the literature or by direct data humans, and have emerged as a premiere organism to submission.
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]
  • Proliferation of Superficial Neuromasts During Lateral Line Development in the Round 2 Goby, Neogobius Melanostomus
    bioRxiv preprint doi: https://doi.org/10.1101/386169; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Proliferation of Superficial Neuromasts During Lateral Line Development in the Round 2 Goby, Neogobius melanostomus 3 4 Authors: J. M. Dickson1, J. A. Janssen2 5 6 Author addresses: 7 1 Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland 8 Ave, Milwaukee, WI, 53201; E-mail: [email protected] 9 2 School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Ave, 10 Milwaukee, WI, 53204; E-mail: [email protected]. Send reprint requests to this address. 11 12 1 bioRxiv preprint doi: https://doi.org/10.1101/386169; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13 ABSTRACT: 14 Members of the family Gobiidae have an unusual lateral line morphology in which some 15 of the lateral line canal segments do not develop or enclose. This loss of lateral line canal segments 16 is frequently accompanied by proliferation of superficial neuromasts. Although the proliferation 17 of superficial neuromasts forms intricate patterns that have been used as a taxonomic tool to 18 identify individual gobiid species, there has never been a detailed study that has documented the 19 development of the lateral line system in gobies. The Round Goby, Neogobius melanostomus, is 20 the focus of this study because the absence of the lateral line canal segments below the eye are 21 accompanied by numerous transverse rows of superficial neuromasts.
    [Show full text]