Triassic Doig Formation Sand Bodies in the Peace River Area of Western Canada

Total Page:16

File Type:pdf, Size:1020Kb

Triassic Doig Formation Sand Bodies in the Peace River Area of Western Canada TRIASSIC DOIG FORMATION SAND BODIES IN THE PEACE RIVER AREA OF WESTERN CANADA : DEPOSITIONAL AND STRUCTURAL MODELS, AND THE IMPACT OF DIAGENESIS ON RESERVOIR PROPERTIES by RICHARD GORDON HARRIS B.Eng. (Hons.), Queen's University, 1990, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Earth and Ocean Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 2000 '••>;. © Richard Gordon Harris, 2000 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT Middle Triassic Doig reservoirs in the Fireweed, Buick Creek, Cache Creek and West Stoddart fields (94-A-13 to Twp.86, Rge.18) of northeastern British Columbia consist of deltaic and shoreline sands encased in shelf and offshore mudstones and siltstones. The reservoirs comprise a series of northwest and northeast trending elongate sand bodies that lie along a south-southeast depositional trend analogous to the position of the original Doig shoreline. Sediments of the Doig Formation are divisible into two facies associations and ten lithofacies representing deposition in shelf to offshore, and deltaic and inter-deltaic environments. Hydrocarbon producing intervals consist of clean, very fine to fine grained, sub-lithic to quartz arenites, inter-bedded sandstones and bioclastic detritus, and disseminated bioclasts. Effective porosity is primarily inter-granular in the sandstone facies with significant moldic and intra-granular porosity developed in the coquina facies at the West Stoddart and Cache Creek fields. Average porosities range from 6.5 - 9.5% for sandstone lithofacies and 4.9 - 8.6% for coquina lithofacies. Pore occluding cements are mainly calcite in the northwest part of the reservoir trend to dolomite and anhydrite in the southeast. The sedimentology and facies architecture of recent discoveries at Cache Creek and West Stoddart contrast with those identified in previous studies of Doig reservoirs at Buick Creek in northeastern British Columbia and Sinclair in west central Alberta. A three-dimensional facies model of the Doig Formation at the Cache Creek, West Stoddart and Fireweed fields depicts sandstone deposition in a deltaic environment as distributary channel fills and slumped delta front deposits. Data for the Buick Creek field ii confirms and extends the incised shoreface model to include fluvial or tidal channels deposited laterally continuous in the same systems tract as the shoreface sands. Sand bodies for all four fields were deposited contemporaneously as the Doig shoreline prograded over mudstones and siltstones of the Doig shelf. Seismic and well data reveal tectonic control on the position and orientation of the Doig reservoir trend. Syn- sedimentary growth faults control the location and geometry of thick sand bodies along the reservoir trend in the Fireweed area. Diagenetic controls along the reservoir trend include the precipitation of calcite in the near surface and shallow burial realm, fracturing of cemented horizons prior to extensive burial and dissolution of cements and framework grains in three distinct episodes. Multiple dissolution phases created moldic, vuggy and inter-granular secondary porosity. Reservoir quality and production from Doig Formation sand bodies in the Peace River area of Western Canada are significantly impacted by the preservation of inter-granular porosity and fracturing related to the distribution of early calcite cements. The early calcite cements were sourced from bioclastic debris and calcareous mudstones distributed during sand body deposition. The formation of open fractures during early diagenesis enhanced both the secondary pore network and the permeability of the West Stoddart and Cache Creek Doig pools. Sand bodies with only minor interstitial calcite have extensive porosity loss by compaction and precipitation of authigenic quartz. A fairway for Doig sand body exploration is constrained by production and core analysis data, structural and depositional models, thermal maturity data and diagenesis. iii TABLE OF CONTENTS Abstract ii Table of Contents iv List of Figures viii List of Tables x Acknowledgements xi CHAPTER 1 - INTRODUCTION 1.1. - Introduction 1 1.4. - Structure of Thesis 2 1.5. - References Cited 3 CHAPTER 2 - DEPOSITIONAL AND STRUCTURAL MODELS FOR DOIG FORMATION SAND BODIES IN THE PEACE RIVER AREA OF NORTHEASTERN BRITISH COLUMBIA 2.1. - Abstract 4 2.2. - Introduction 5 2.3. - Geologic Setting 6 2.4. - Lithostratigraphy and Sand Body Geometry 10 2.4.1. - Facies and Facies Associations 12 2.4.2. - Cross-sections and Facies Architecture 14 2.4.2.1. - West Stoddart and Cache Creek 14 2.4.2.2. - Fireweed 16 2.4.2.3. - Buick Creek.... 19 iv 2.5. - Depositional Setting 21 2.5.1. - Interpretation of Fades and Fades Assodations 21 2.5.2. - Depositional Models for Sand Bodies Comprising the Fireweed, Cache Creek, West Stoddart and Buick Creek Pools 25 2.5.3. - Alternative Depositional Environments 31 2.5.3.1. - Tidal Inlets/Barrier Islands 31 2.5.3.2. - Shelf Sheet Sands Incised by Tidal/Storm Channels 31 2.6. - Structural Controls on Reservoir Distribution 32 2.6.1. - Regional Considerations 32 2.6.2. - Deposition of Doig Sands at Structurally Controlled Slope Breaks 35 2.6.3. - Structural Features form Log Data 35 2.6.4. - Syn-Sedimentary Growth Faulting 38 2.7. - Summary and Conclusions 40 2.8. - References Cited 42 CHAPTER 3 - DIAGENESIS, RESERVOIR QUALITY AND PRODUCTION TRENDS OF DOIG FORMATION SAND BODIES IN THE PEACE RIVER AREA OF WESTERN CANADA 3.1. - Abstract 46 3.2. - Introduction 47 3.3. - Lithology and Depositional Setting 49 3.4. - Database 52 3.5. - Petrology of Doig Sandstones 54 3.5.1. - Sandstone Composition 54 V 3.5.2. - Coquina Composition 55 3.5.3. - Diagenesis 55 3.5.3.1. - Calcite Cement 57 3.5.3.2. - Quartz 57 3.5.3.3. - Apatite 59 3.5.3.4. - Dolomite 59 3.5.3.5. - Anhydrite 59 3.6. - Paragenesis 61 3.6.1. - Early Calcite 61 3.6.2. - Fracturing and Microfaulting 63 3.6.3. - Formation of MoldicA/uggy Porosity 65 3.6.4. - Compaction 65 3.6.5. - Replacement of Quartz by Carbonate 65 3.6.6. - Precipitation of Ferroan Calcite 66 3.6.7. - Carbonate Dissolution - Secondary Porosity 66 3.6.8. - Dolomite Precipitation 67 3.6.9. - Hydrocarbon Migration 67 3.6.10. - Geochemical Considerations 67 3.7. - Reservoir Quality 68 3.7.1. - Trend of Porosity and Permeability with Depths 70 3.7.2. - Bioclastic Facies and Calcite Cement Distribution 72 3.7.3. - Distribution of Secondary Porosity 72 3.8. - Production Trends 75 3.9. - Discussion 79 3.10. - Constraints on Exploration 82 vi 3.11. - Conclusions 85 3.12. - References Cited 86 CHAPTER 4 - CONCLUSIONS 89 APPENDIX A - CORE IDENTIFICATION AND LOCATION 92 APPENDIX B - CORE DESCRIPTIONS 94 APPENDIX C - CATALOGUE OF THIN SECTION 186 APPENDIX D - CORE ANALYSIS DATA 190 vii LIST OF FIGURES Figure 2.1. Map illustrating Doig penetrations within pools of the study area and cross-section locations 7 Figure 2.2. Stratigraphic framework for the study area 9 Figure 2.3. Facies associations within the Doig Formation at West Stoddart and Buick Creek 13 Figure 2.4. Section A-A' through West Stoddart field oriented parallel to depositional dip 15 Figure 2.5. Section B-B' through Fireweed, Cache Creek and West Stoddart fields, oriented perpendicular to depositional dip 15 Figure 2.6. Section C-C through Buick Creek field oriented perpendicular to depositional dip 17 Figure 2.7. Total Doig sand isopach within the study area 17 Figure 2.8. Core photographs of Facies 1a, 1c, 2a and 2b 18 Figure 2.9. Core photographs of Facies 2c, 2e and 2f 18 Figure 2.10. Sedimentary features in core photographs of the sandstone and bioclastic lithofacies 24 Figure 2.11. Sedimentological model for the Doig Formation at West Stoddart, Cache Creek and Fireweed fields, northeastern British Columbia 26 Figure 2.12. Dipmeter log through interpreted channel sandstones of the Cache Creek field 29 Figure 2.13. Structural elements intersecting the regional Doig sand trend 33 Figure 2.14. Structure contour map of the top of the Doig Formation upper phosphatic marker 34 Figure 2.15. Doig Formation isopach within the study area 36 Figure 2.16. Stratigraphic Section D-D' located in Fig 7 37 Figure 2.17. 3D seismic line showing middle Triassic growth fault at down-dip edge of the Fireweed delta complex 39 viii Figure 3.1. Location map of the study area showing the reservoir trend 48 Figure 3.2. Stratigraphic framework for the study area 50 Figure 3.3. Total Doig sand isopach within the study area 53 Figure 3.4. Core photographs of calcite cements in Doig Formation sandstone 56 Figure 3.5. Photomicrographs and SEM images of diagenetic phases in Doig Formation sandstones 58 Figure 3.6. Photomicrographs and core images of diagenetic features within Doig Formations sandstones 60 Figure 3.7. Generalized paragenetic sequence and porosity evolution of Doig Formation sand bodies 62 Figure 3.8. Fracture styles in Doig Formation sandstones..... 64 Figure 3.9. Core image and photomicrograph of compaction features 64 Figure 3.10. Graphs of core analysis data versus true vertical depth for various Doig pools 71 Figure 3.11.
Recommended publications
  • Chapter Upper Cretaceous Reservoirs
    CHAPTER 9 UPPER CRETACEOUS RESERVOIRS P. Viney, Petrel Robertson; Part B: Belly River Fm; and J.F. Chappell, L.L. & E. Canada; Part A: Cardium Fm INTRODUCTION The Bearpaw Fm, over 150 m thick in southcentral Alberta it would appear that exploration dollars directed towards them could Walker (1987, 1988), Swagor (1975) and Swagor et al. (1976). (14-18-2-23W4M), thins to the north and grades into the non-marine yield a good rate of return. Interest in exploration for these Cardium Fm conglomerate reser­ The evolution of the Alberta Basin during Upper Cretaceous time sequence of the overlying Horseshoe Canyon Fm (Edmonton Gp). voirs was reactivated in the early 1980's due to the discovery of and its effect on the geologic section is covered in the introduction to The four major Upper Cretaceous reservoirs are: 1) The Cardium; several new Cardium Fm pools and the recognition that modern this text. Strata of the Upper Cretaceous underlie most of the area Production has been obtained from the Upper Cretaceous section 2) The lower Belly River; 3) The Dunvegan-Doe Creek; and 4) The seismic reflection technology could be used in their detection covered by the Western Canada Sedimentary Basin in an almost con­ for many years. However, prospecting for Upper Cretaceous hydro­ Belly River fluvial. (Chappell, 1984, 1985; Wren, 1984). The Carrot Creek Cardium S tinuous sequence of deposition. From the Base of Fish Scales Zone, carbons did not begin in earnest until the discovery of Cardium pool, located in 53-12 and 13 W5M (Fig. 9.4), is a typical example.
    [Show full text]
  • Wapiti River Water Management Plan Summary
    Wapiti River Water Management Plan Summary Wapiti River Water Management Plan Steering Committee February 2020 Summary The Wapiti River basin lies within the larger Smoky/Wapiti basin of the Peace River watershed. Of all basins in the Peace River watershed, the Wapiti basin has the highest concentration and diversity of human water withdrawals and municipal and industrial wastewater discharges. The Wapiti River Water Management Plan (the Plan) was developed to address concerns about water diversions from the Wapiti River, particularly during winter low-flow periods and the potential negative impacts to the aquatic environment. In response, a steering committee of local stakeholders including municipalities, Sturgeon Lake Cree Nation, industry, agriculture, the Department of Fisheries and Oceans Canada, and the Mighty Peace Watershed Alliance (MPWA), supported by technical experts from Alberta Environment and Parks (AEP), was established. The steering committee initiated the development of a water management plan that includes a Water Conservation Objective (WCO) and management recommendations for the Wapiti River basin from the British Columbia border to its confluence with the Smoky River. A WCO is a limit to the volume of water that can be withdrawn from the Wapiti River, ensuring that water flow remains in the river system to meet ecological objectives. The Plan provides guidance and recommendations on balancing the needs of municipal water supply, industry uses, agriculture and other uses, while maintaining a healthy aquatic ecosystem in the Alberta portion of the Wapiti River basin. Wapiti River Water Management Plan | Summary 2 Purpose and Objectives of the Plan The Plan will be provided as a recommendation to AEP and if adopted, would form policy when making water allocation decisions under the Water Act, and where appropriate, under the Environmental Protection and Enhancement Act by establishing a WCO for the Wapiti River.
    [Show full text]
  • Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files
    Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files By Debra K. Higley1, Mitchell E. Henry, and Laura N.R. Roberts Report Series 2005-1421 U.S. Department of the Interior U.S. Geological Survey 1 Inquiries about this publication should be addressed to: Debra K. Higley U.S. Geological Survey, MS 939, Box 25046 Denver Federal Center, Denver, CO 80225 Tel: 303-236-5791 Email: [email protected] 1 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For products and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS–the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Debra K. Higley, Mitchell Henry, and Laura N.R. Roberts, 2006, Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files: U.S. Geological Survey Report Series 2005-1421, web publication and associated data files. Any use of trade, product, or firm names is for descriptive purposes only, and does not imply endorsement by the U.S. government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction …………………………………………………………….. 3 Data Processing Steps …………………………………………….……. 4 Acknowledgments ………………………………….………………..…. 5 Zmap-Format Grid Files ..………………………….………………..…. 5 References and Software Cited …………………….……………..…….
    [Show full text]
  • The Skagit-High Ross Controversy: Negotiation and Settlement
    Volume 26 Issue 2 U.S. - Canada Transboundary Resource Issues Spring 1986 The Skagit-High Ross Controversy: Negotiation and Settlement Jackie Krolopp Kirn Marion E. Marts Recommended Citation Jackie K. Kirn & Marion E. Marts, The Skagit-High Ross Controversy: Negotiation and Settlement, 26 Nat. Resources J. 261 (1986). Available at: https://digitalrepository.unm.edu/nrj/vol26/iss2/6 This Article is brought to you for free and open access by the Law Journals at UNM Digital Repository. It has been accepted for inclusion in Natural Resources Journal by an authorized editor of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. JACKIE KROLOPP KIRN* and MARION E. MARTS** The Skagit-High Ross Controversy: Negotiation and Settlement SETTING AND BACKGROUND The Skagit River is a short but powerful stream which rises in the mountains of southwestern British Columbia, cuts through the northern Cascades in a spectacular and once-remote mountain gorge, and empties into Puget Sound approximately sixty miles north of Seattle. The beautiful mountain scenery of the heavily glaciated north Cascades was formally recognized in the United States by the creation of the North Cascades National Park and the Ross Lake National Recreation Area in 1968, and earlier in British Columbia by creation of the E.C. Manning Provincial Park. The Ross Lake Recreation Area covers the narrow valley of the upper Skagit River in Washington and portions of several tributary valleys. It was created as a political and, to environmentalists who wanted national park status for the entire area, controversial, compromise which accom- modated the city of Seattle's Skagit River Project and the then-planned North Cascades Highway.
    [Show full text]
  • A Study of Potential Co-Product Trace Elements Within the Clear Hills Iron Deposits, Northwestern Alberta
    Special Report 08 A Study of Potential Co-Product Trace Elements Within the Clear Hills Iron Deposits, Northwestern Alberta NTS 83M,N, 84C,D A STUDY OF POTENTIAL CO-PRODUCT TRACE ELEMENTS WITHIN THE CLEAR HILLS IRON DEPOSITS, NORTHWESTERN ALBERTA Prepared for Research and Technology Branch, Alberta Energy Prepared by APEX Geoscience Ltd. (Project 97213) In cooperation with The Alberta Geological Survey, Energy and Utility Board And Marum Resources Ltd. February, 1999 R.A. Olson D. R. Eccles C.J. Collom A STUDY OF POTENTIAL CO-PRODUCT TRACE ELEMENTS WITHIN THE CLEAR HILLS IRON DEPOSITS, NORTHWESTERN ALBERTA TABLE OF CONTENTS SECTION PAGE ACKNOWLEDGMENTS AND DISCLAIMER ....................................................... vi 1.0 SUMMARY ........................................................................................................1 2.0 INTRODUCTION ..................................................................................................3 2.1 Preamble....................................................................................................3 2.2 Location, Access, Physiography, Bedrock Exposure .................................4 2.3 Synopsis of Prior Scientific Studies of the Clear Hills Iron Deposits, and the Stratigraphically Correlative Bad Heart Formation ...............................4 2.4 Synopsis of Prior Exploration of the Clear Hills Iron Deposits....................6 3.0 GEOLOGY ........................................................................................................7 3.1 Introduction
    [Show full text]
  • Deh Cho Route Grimshaw, AB, to Alaska Hwy, BC Via NWT Highways
    Deh Cho Route Grimshaw, AB, to Alaska Hwy, BC via NWT Highways Key to Advertiser © The MILEPOST® Principal Route Logged Services -Camping C-173/278km Paved Unpaved C D -Dump Station Other Roads Logged d -Diesel N63˚16’ W123˚36’ G -Gas (reg., unld.) r -Ice e Wrigley I v Other Roads Ferry Routes i L -Lodging R Slemmon Lake M -Meals e f DEH CHO ROUTE Refer to Log for Visitor Facilities P -Propane i -Car Repair (major) n Scale R t k r -Car Repair (minor) w t o 0 20 Miles l S -Store (grocery) Marion l Map 0 20 Kilometres -Telephone (pay) Russell Lake e T Lake Y PRae-Edzo/Behchoko Ingraham Trail 3 Prosperous 1 w Lake Prelude L. Y-43/69km Wrigley Extension Y-59/95km 4 Tibbett L. M J-153/246km SbP Reid L. wt ac C-38/61km Yellowknife Free Ferry ke Y-0 nz FS-0 N62˚27’ W114˚21’ ie J-212/341km SwtbP Fort Simpson Frontier Trail AH-244/393km Mills 3 Nahanni N61˚51’ W121˚20’ w Free C-0 Lake Ferry wt Great Slave Lake National Checkpoint FS-38/61km Fort bP J-0 Park er G-550/885km Providence Riv 1 Y-212/341km Nahanni Butte R E-114/183km 4,579 ft./1,396m iver AH-385/620km Sw A-180/290km w G-409/659km E-24/38km Nahanni▲ Fort Resolution bP G-614/988km r Butte ive w B-116/186km wtbP N61˚10’ W113˚41’ R ut t N61˚04’ Kakisa N61˚05’ W122˚51’ Tro Waterfalls Route w Hay 6 W117˚30’ Lake S Liard t 1 River w l Trout w a sa Pine Point aki R v Trail AH-110/176km Lake t K iv 2 5 er e G-685/1102km Trout Tathina Lake Enterprise N60˚48’ Lake t AH-449/723km N60˚33’ P W115˚47’ w R E-186/300km Dogface W116˚08’ iv G-345/555km e wtbP Lake r d Fort Liard SwbP r NORTHWEST B-52/83km
    [Show full text]
  • Cadomin and Jasper Areas Willem Langenberg and John Waldron
    Field Guide to Selected Geological Sections of the Cadomin and Jasper Areas Willem Langenberg and John Waldron Edmonton Geological Society Field Trip Guide September 22-23, 2007 Introduction The Rocky Mountains can be divided into Foothills, Front Ranges, and Main Ranges as shown in the cartoon below (Fig. 1). Outcrops in the foothills are dominated by softer weathering Mesozoic rocks of the foreland basin: mainly sandstone and shale but also including conglomerates and coal. Most of the clastic rocks represent material eroded from earlier-formed parts of the orogen to the west, which was subsequently cannibalized as the thrustbelt advanced westward in late Mesozoic to early Cenozoic time. Locally in the foothills, the more resistant late Paleozoic carbonate rocks come to the surface in elongated ridges. Saturday's traverse will begin in the foothills of the Cadomin area and proceed southwest into the Front Ranges. In the Front Ranges carbonates dominate the landscape. These represent the late Paleozoic continental margin of the Laurentian continent, now sliced into multiple imbricated thrust sheets. Mesozoic clastics are confined to narrow valleys. On Sunday morning we will take the Yellowhead Highway further into the Front Ranges and eventually into the Main Ranges of the Rockies. In the Main Ranges, lower parts of the stratigraphy are preserved, including widespread outcrops of older, Early Paleozoic carbonates, clastics, and the underlying Proterozoic succession of the Windermere Supergroup. The structural style is different, too. Although thrust sheets are present, they are generally much larger in scale, and their dips are gentler. In addition, the rocks were more ductile when deformed, so that cleavage and folds are much more widely developed in the mudrocks.
    [Show full text]
  • Alberta Table of Formations
    3D PGF v2 Model Fort Northern Central Southern Southern West- East- Northwest Northeast McMurray Grande ERATHEM / ERA Mountains Mountains Mountains Plains Central Central Plains Prairie Plains and Edmonton and Edmonton and Edmonton Edmonton Plains Edson Edmonton Plains Edmonton Edmonton Edmonton SYSTEM / PERIOD Foothills Jasper Foothills Foothills OF YEARS Banff SERIES / EPOCH Calgary AGE IN MILLIONS Blairmore Medicine STAGE / AGE Hat GC MC GC MC GC MC Laurentide Laurentide B Laurentide B B Laurentide Cordilleran Laurentide Cordilleran Laurentide Laurentide Cordilleran Cordilleran Laurentide BL BL QUATERNARY PLEISTOCENE Cordilleran EMPRESS EMPRESS EMPRESS EMPRESS EMPRESS PLIOCENE 2.6 5.3 DEL BONITA ARROWWOOD HAND HILLS WHITECOURT MOUNTAIN HALVERSON RIDGE PELICAN MOUNTAIN 7 NEOGENE MIOCENE 23 zone 1 OLIGOCENE CYPRESS HILLS OBED MOUNTAIN SWAN HILLS 34 EOCENE CENOZOIC 56 DALEHURST PALEOGENE PASKAPOOModel ZonesPASKAPOO PASKAPOO LACOMBE PALEOCENE HAYNES zonesPORCUPINE 2-3 HILLS PORCUPINE HILLS UPPER UPPER COALSPUR COALSPUR UPPER RAVENSCRAG UPPER 66 LOWER WILLOW CREEK WILLOW CK SCOLLARD SCOLLARD 01ENTRANCEsediment CONGLOMERATE above bedrock (surficial deposits) LOWER LOWER FRENCHMAN LOWER BATTLE BATTLE BATTLE WHITEMUD WHITEMUD MAASTRICHTIAN Bedrock topography CARBON ST. MARY RIVER ST. MARY RIVER HORSESHOE TOLMAN MORRIN UPPER UPPER EASTEND CANYON HORSESHOE 02 Paskapoo and Porcupine Hills formations HORSETHIEF CANYON 72 DRUMHELLER BLOOD RESERVE BLOOD RESERVE EDMONTON UPPER SAUNDERS SAUNDERS WAPITI / BRAZEAU STRATHMORE BRAZEAUScollard, Willow
    [Show full text]
  • Exploration Analysis
    EXPLORATION ANALYSIS CARDIUM FORMATION Current Situation The Cardium Formation is not an exploration target in B.C. Where it has been tested, it is as a secondary target, and often with a straddle drillstem test run on the basis of a prospective well log signature. The formation has thus been open to drilling fluids for an extended period of time, and wellbore damage is likely to be severe. This situation is exacerbated by lack of reservoir “sweet spots”, shallow drilling depths and subnormal formation pressures. Velvet Exploration undertook an exploration program in 2000/2001 for fractured Cardium shoreface sandstones in the Copton-Narraway area of Alberta, in the southeastern corner of Map 2. There do not appear to be a substantial number of new Cardium wells on production in this area, and Velvet’s successor, El Paso, is not drilling new wells on the play. Tight Gas Potential The Cardium presents an attractive in-place gas resource, with massive sandstones of substantial thickness distributed continuously over a large area (Map 2) (Table 1). Because of its shallow burial depth, there has been less reservoir degradation by compaction than for deeper tight gas reservoirs. However, low reservoir pressures reduce in-place gas volumes, particularly within the subnormally-pressured Deep Basin. By qualitative comparison with the Cadotte and Spirit River, we speculate an in-place gas resource of 1-3 BCF/section. Cardium tight gas will likely be a secondary, uphole target to be exploited in conjunction with deeper tight gas plays. Locally, Cardium gas production may occur where: • operators stumble upon conglomeratic sweet spots, or • fracture-enhanced reservoir sections are defined in the Foothills, where the Cardium section is thickest.
    [Show full text]
  • Dam(N)Ing BC: Utilizing Historical Maps and Web Maps to Remember the Dam(N)Ed
    Dam(n)ing BC: Utilizing historical maps and web maps to remember the dam(n)ed [email protected] outline • Background / How? / Why? • “Site C”: BC Hydro 3rd dam on Peace River • other dam(ned) sites methods / sources • gov’t reports, maps and photos from late 18th century onwards near North “Buttle Lake” campground “Campbell River” Islands… …near Strathcona Park Lodge (part of sheet) NTS 92F/13: before / after 1952-54 dam construction 1946: 1st edition 2011 4th edition 5 Before Strathcona Dam deliberate #1?... hmmm… SiteCproject.com: initial overview map WAC Bennett and Peace Canyon Dams (on Peace River backing up into Parsnip and Parsnip Rivers) created Williston Reservoir deliberate #2?… hmmm… Vancouver, Burnaby, Richmond, Delta 1,367 sq.kms 1,773 sq.kms 93 sq.kms BC gov’t Dec.16, 2014 announcement slideshow Rivers and humans humans have manipulated rivers for millennia • Smith, N. A history of dams, 1971 • Goudie, A.S. The human impact on the natural environment: Past, present, and future (7th edition since the 1980s!) • Wohl, E. & Merritts, D.J. What is a natural river? Geography Compass, 2007 Site C Joint Review Panel Report, 2014 Panel’s Reflections: “Today’s distant beneficiaries [electricity consumers] do not remember the Finlay, Parsnip, and pristine Peace Rivers…” (p.307) How did we get from this… Finlay Peace Parsnip [section of map from] Peace River Chronicles, 1963 …to this… …so let us remember the… Finlay Peace Parsnip Utilizing historical maps and webmap to… • Remember the Findlay, Parsnip, Peace Rivers and their tributaries methods / sources • gov’t reports, maps and photographs from late 18th century onwards Site C Joint Review Panel Report, 2014 “All but two Aboriginal groups opposed the Project.
    [Show full text]
  • The Universw of Calgary a Thesis Submitted to The
    THE UNIVERSW OF CALGARY Isotopic and Compositional Characterization of Natural Gases in the Lower and Middle Triassic Montney, Halfway, and Doig Formations, Alberta Basin Steven Desrocher A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STCTDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOLOGY AND GEOPHY SICS CALGARY, ALBERTA DECEMBER, 1997 0 Steven Desrocher 1997 National Library Bibliothéque natiode u*m of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. nie Wellington OttawaON K1AW Ottawa ON KIA ON4 Canada canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lîbrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distriiuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation, ABSTRACT Natural gases in the Montney, Doig, and Halfway formations are charactenzed by variations in the proportion of methane to higher alkanes, affecting caionfic and commercial values. Stable isotope and compositional analyses suggest that wet gases in the central study am are produced via active thermogenic gas generation, with gases sourced in the Doig and Montney formations.
    [Show full text]
  • Quarterly Report on Short-Term Water Approvals and Use
    Quarterly Report on Short-Term Water Approvals and Use April to June 2011 About the BC Oil and Gas Commission The BC Oil and Gas Commission is an independent, single-window regulatory agency with responsibilities for overseeing oil and gas operations in British Columbia, including exploration, development, pipeline transportation and reclamation. The Commission’s core roles include reviewing and assessing applications for industry activity, consulting with First Nations, ensuring industry complies with provincial legislation and cooperating with partner agencies. The public interest is protected through the objectives of ensuring public safety, protecting the environment, conserving petroleum resources and ensuring equitable participation in production. TABLE OF CONTENTS Introduction Page 2 Processes and Requirements Page 3 Results Page 4 Summary Page 7 Appendix A Page 8 Appendix B Page 9 Appendix C Page 12 1 BC Oil and Gas Commission Quarterly Report on Short-Term Water Approvals and Use Introduction The Oil and Gas Activities Act (OGAA) provides authority to the BC Oil and Gas Commission (Commission) to issue short-term water use approvals under Section 8 of the Water Act to manage short-term water use by the oil and gas industry. Approvals under Section 8 of the Water Act authorize the diversion and use of water for a term not exceeding 12 months. This report details the Commission’s responsibilities and authorities under Section 8 of the Water Act; it does not include the diversion and use of water approved by other agencies (such as the Ministry of Forests, Lands and Natural Resource Operations, which has responsibility for water licensing) or for purposes other than oil and gas activities.
    [Show full text]