Magpie Jay General Information and Care

Total Page:16

File Type:pdf, Size:1020Kb

Magpie Jay General Information and Care Magpie Jay General Information and Care: Black Throated Magpie Jays (Calocitta colliei) and White Throated Magpie Jay (Calocitta formosa) are the only two species in their genus. Black Throated Magpie Jays are endemic to Northwestern Mexico. The range of White Throated Magpie Jays lies to the south, overlapping with Black Throats slightly in the Mexican states of Jalisco and Colima, and running into Costa Rica. Both of these birds are members of the family Corvidae. Magpie Jays are energetic, highly intelligent animals and need to be kept in a large planted aviary - not just a cage. These birds are highly social and are commonly found in the wild as cooperative nesters. They are omnivores and favor a great variety of fruits, insects, small rodents, and nuts. A captive diet that works well in my aviaries is a basic pellet low iron softbill diet such as Kaytee’s Exact Original Low Iron Maintenance Formula for Toucans, Mynas and other Softbills. A bowl of this is in the cage at all times and is supplemented with nuts, fruits and veggies like apples, papaya, grapes, oranges, peas and carrots and the occasional treat of small mice and insects like meal worms, crickets, megaworms, and waxworms are relished by the birds. Extra protein is essential if you want these birds to breed. Fresh water should always be provided. I use a shallow three to four inch deep, twelve inch wide crock the birds can drink from and bath in. The birds you are receiving from my aviaries are hand fed and closed banded. How recently they were weaned will affect how tame they are at first. All these birds will become quite comfortable with their caretaker with a little time and patience. Many of the breeding pairs I own will solicit and take treats and nesting material from my hand. Many Magpie Jays from my aviaries have been trained by animal trainers and used in films. A word of warning: the intelligence of these birds makes them excellent escape artists so make sure latches to aviaries are very secure. Please feel free to contact me with questions as I want the best for the birds I raised. If you are interested in having a mixed aviary, contact me for suggestions of compatible bird species as Magpie Jays can be aggressive and territorial. Paul Colo Rainforest Aviaries 619-518-5140 .
Recommended publications
  • Bird Damage to Pistachios
    The extent of damage to pistachios by some birds that knock nuts to the ground, where they hull, shell, and eat them, can be measured. Losses to birds that pluck nuts from the tree and fly off to eat them else- where can only be estimated. counties to the south. District I1 (Central) is Merced, Madera, Fresno, and Kings Bird damage to nistachios counties. District I11 (Northern) is Monte- rey, San Benito, Inyo, and all counties to the north of Merced County. Terrell P. Salmon 0 A. Charles Crabb 0 RexE.Marsh Scope of the problem We received 105 responses (23 percent) from the 458 surveys mailed. Thirteen (12.7 percent) were excluded from analy- Crows are the primary culprits sis, because the orchards represented followed by ravens and jays were not in production, were outside Cali- fornia, or were managed by another per- son. The remaining 92 indicated they had pistachio losses due to one or more bird species. Bird damage was widespread through- out the state, as indicated by surveys re- turned from 18 counties. These 18 coun- ties represent 98 percent of the bearing pistachio acreage in California. The infor- mation we report here is based on the sur- vey returns and does not account for bird Various bird species are pests to a step in defining the problem and evaluat- damage and control that undoubtedly oc- number of California crops. Nut crops ing current bird control methods. cur but were not reported. Our estimates such as pistachios, almonds, and walnuts The major focus of the survey was to should therefore be considered conserva- are particularly hard hit, although infor- identify the bird species involved, the ex- tive.
    [Show full text]
  • Pica (Pica) Bottanensis in India
    PRŷS-JONES & RASMUSSEN: Black-rumped Magpie 71 The status of the Black-rumped Magpie Pica (pica) bottanensis in India Robert P. Prŷs-Jones & Pamela C. Rasmussen Prŷs-Jones, R. P., & Rasmussen, P. C., 2018. The status of the Black-rumped Magpie Pica (pica) bottanensis in India. Indian BIRDS 14 (3): 71–73. Robert P. Prŷs-Jones, Bird Group, Department of Life Sciences, Natural History Museum, Akeman St, Tring, Herts HP23 6AP, UK. E-mail: [email protected] [RPP-J] Pamela C. Rasmussen, Department of Integrative Biology and MSU Museum, Michigan State University, East Lansing, MI 48864, USA; Bird Group, Department of Life Sciences, Natural History Museum, Akeman St, Tring, Herts HP23 6AP, UK. E-mail: [email protected] [PCR] Manuscript received on 01 February 2018. he presence of the Eurasian Magpie Pica pica (sensu lato) in India (Praveen within Native Sikkim, any such records having et al. 2016) is predominantly based on the well-documented occurrence of more probably been a mistake for southern Tthe race bactriana in the north-western Himalayas east to northern Himachal Tibet,” (Meinertzhagen 1927: 371). There is Pradesh (Rasmussen & Anderton 2012; Dickinson & Christidis 2014). However, thus a clear contradiction between his own the question as to whether the taxon bottanensis may additionally occur, or have writings and the existence of his specimen, occurred, in Sikkim has recently resurfaced as a result of a comprehensive molecular from which we deduce that he most likely phylogenetic study of the genus Pica by Song et al. (2018), who recognised Pica (p.) stole the specimen later, relabelling it without bottanensis to be an anciently diverged and distinctive lineage.
    [Show full text]
  • Azure-Winged Magpie Onaga (Jpn) Cyanopica Cyana
    Bird Research News Vol.6 No.6 2009.6.24. Azure-winged Magpie Onaga (Jpn) Cyanopica cyana Morphology and classification Flock: Azure-winged Magpies live in a flock in the breeding and non- Classification: Passeriformes Corvidae breeding seasons, holding their flock territory throughout the year (Hosono 1989). In breeding period they roost in a flock except for Total length: 366.8mm (319-390) Wing length: 130.7mm (122-141) females incubating eggs and nestlings. In Nagano Pref., for instance, Tail length: 214.8mm (192-240) Culmen length: 25.7mm (24-30) the mean flock and home range sizes were 23 birds (9-45) and 21.8 ha Tarsus length: 33.3mm (32-35) Weight: 83.4g (69-96) (11-48), respectively in Kawanakajima (Hosono 1968), 28.7 birds and 135.1ha (103-243) in Ina, and 16.7 birds and 287.6 ha (130-376) in Measurements by Kuzu (1942). Nobeyama (Imanishi 2003). In Saitama Pref., on the other hand, they Appearance: were 24 birds (17-31, n = 16) and 13.4ha (6.2-24.8, n = 11) respec- Azure-winged Magpies are similar in tively in Tokorozawa, where Azure-winged Magpies are assumed to plumage coloration in males and fe- occur in the highest density. They also roost in a flock, but more than one flock occasionally roosted together in the same site. They use as a males. Males are slightly larger than roost site a dense thicket of bamboo, a coniferous wood and a broad- females in body size. They are gray on leaved deciduous wood. A coniferous wood and a thicket of bamboo the upperpart and white or light gray were used with higher frequency in winter, but a broad-leaved decidu- on the underpart (Photo 1).
    [Show full text]
  • S Largest Islands: Scenarios for the Role of Corvid Seed Dispersal
    Received: 21 June 2017 | Accepted: 31 October 2017 DOI: 10.1111/1365-2664.13041 RESEARCH ARTICLE Oak habitat recovery on California’s largest islands: Scenarios for the role of corvid seed dispersal Mario B. Pesendorfer1,2† | Christopher M. Baker3,4,5† | Martin Stringer6 | Eve McDonald-Madden6 | Michael Bode7 | A. Kathryn McEachern8 | Scott A. Morrison9 | T. Scott Sillett2 1Cornell Lab of Ornithology, Ithaca, NY, USA; 2Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA; 3School of BioSciences, University of Melbourne, Melbourne, Vic., Australia; 4School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Qld, Australia; 5CSIRO Ecosystem Sciences, Ecosciences Precinct, Brisbane, Qld, Australia; 6School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, Qld, Australia; 7ARC Centre for Excellence for Coral Reefs Studies, James Cook University, Townsville, Qld, Australia; 8U.S. Geological Survey- Western Ecological Research Center, Channel Islands Field Station, Ventura, CA, USA and 9The Nature Conservancy, San Francisco, CA, USA Correspondence Mario B. Pesendorfer Abstract Email: [email protected] 1. Seed dispersal by birds is central to the passive restoration of many tree communi- Funding information ties. Reintroduction of extinct seed dispersers can therefore restore degraded for- The Nature Conservancy; Smithsonian ests and woodlands. To test this, we constructed a spatially explicit simulation Institution; U.S. National Science Foundation (NSF), Grant/Award Number: DEB-1256394; model, parameterized with field data, to consider the effect of different seed dis- Australian Reseach Council; Science and persal scenarios on the extent of oak populations. We applied the model to two Industry Endowment Fund of Australia islands in California’s Channel Islands National Park (USA), one of which has lost a Handling Editor: David Mateos Moreno key seed disperser.
    [Show full text]
  • Cooperative Breeding in Azure-Winged Magpies, Cyanopica Cyana, Living in a Region of Heavy Snowfall ’
    The Condor89:835-841 0 The CooperOrnithological Society 1987 COOPERATIVE BREEDING IN AZURE-WINGED MAGPIES, CYANOPICA CYANA, LIVING IN A REGION OF HEAVY SNOWFALL ’ SHIGEMOTO KOMEDA,~ SATOSHI YAMAGISHI,~ AND MASAHIRO FUJIOKA Department of Biology, Faculty of Science,Osaka City University,Sumiyoshi-ku, Osaka 558, Japan Abstract. The frequencyof occurrenceof helpers, their age and sex, and certain behavior at nests were investigated in Azure-winged Magpies, Cyanopica cyana, living in central Japan, a region of heavy snowfall. One group of 16 birds was a summer visitor and the other two groupsof about 20 birds were resident. Out of 14 nestswe observed in 1983, six had one to two helpers, one had no helper, and at the other seven we could not confirm whether helpers attended or not. Therefore, 43% to 93% of nests had helpers. One helper was known to attend at least four nests, and seven of 14 marked individuals (50%) acted as helpers.These resultsmean that cooperativebreeding occurs regularly in this population. Key words: Cooperativebreeding; helper; Corvidae;group living;feeding; plural nester: Cyanopica cyana. INTRODUCTION amples of regular cooperative breeders in cool- Cooperative breeding, which involves care of temperate zones are the Long-tailed Tit, Aegi- young by individuals other than parents, has been thalos caudatus (Nakamura 1972, 1975; Gaston reported in a few hundred avian speciesin a wide 1973), Pinyon Jay, Gymnorhinus cyanocephalus variety of taxonomic groups. Most cooperative (Balda and Balda 1978), Gray-breasted Jay, breedersoccur in tropical or subtropical regions Aphelocoma ultramarina (Brown 1970, 1972) or in temperate zones with equable climate and Acorn Woodpecker, Melanerpes formicivo- , (Grimes 1976, Rowley 1976, Woolfenden 1976, rus (Stacey 1979, Koenig 198 1, Koenig et al.
    [Show full text]
  • Magnificent Magpie Colours by Feathers with Layers of Hollow Melanosomes Doekele G
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb174656. doi:10.1242/jeb.174656 RESEARCH ARTICLE Magnificent magpie colours by feathers with layers of hollow melanosomes Doekele G. Stavenga1,*, Hein L. Leertouwer1 and Bodo D. Wilts2 ABSTRACT absorption coefficient throughout the visible wavelength range, The blue secondary and purple-to-green tail feathers of magpies are resulting in a higher refractive index (RI) than that of the structurally coloured owing to stacks of hollow, air-containing surrounding keratin. By arranging melanosomes in the feather melanosomes embedded in the keratin matrix of the barbules. barbules in more or less regular patterns with nanosized dimensions, We investigated the spectral and spatial reflection characteristics of vivid iridescent colours are created due to constructive interference the feathers by applying (micro)spectrophotometry and imaging in a restricted wavelength range (Durrer, 1977; Prum, 2006). scatterometry. To interpret the spectral data, we performed optical The melanosomes come in many different shapes and forms, and modelling, applying the finite-difference time domain (FDTD) method their spatial arrangement is similarly diverse (Prum, 2006). This has as well as an effective media approach, treating the melanosome been shown in impressive detail by Durrer (1977), who performed stacks as multi-layers with effective refractive indices dependent on extensive transmission electron microscopy of the feather barbules the component media. The differently coloured magpie feathers are of numerous bird species. He interpreted the observed structural realised by adjusting the melanosome size, with the diameter of the colours to be created by regularly ordered melanosome stacks acting melanosomes as well as their hollowness being the most sensitive as optical multi-layers.
    [Show full text]
  • A Bird in Our Hand: Weighing Uncertainty About the Past Against Uncertainty About the Future in Channel Islands National Park
    A Bird in Our Hand: Weighing Uncertainty about the Past against Uncertainty about the Future in Channel Islands National Park Scott A. Morrison Introduction Climate change threatens many species and ecosystems. It also challenges managers of protected areas to adapt traditional approaches for setting conservation goals, and the phil- osophical and policy framework they use to guide management decisions (Cole and Yung 2010). A growing literature discusses methods for structuring management decisions in the face of climate-related uncertainty and risk (e.g., Polasky et al. 2011). It is often unclear, how- ever, when managers should undertake such explicit decision-making processes. Given that not making a decision is actually a decision with potentially important implications, what should trigger management decision-making when threats are foreseeable but not yet mani- fest? Conservation planning for the island scrub-jay (Aphelocoma insularis) may warrant a near-term decision about non-traditional management interventions, and so presents a rare, specific case study in how managers assess uncertainty, risk, and urgency in the context of climate change. The jay is restricted to Santa Cruz Island, one of the five islands within Chan- nel Islands National Park (CINP) off the coast of southern California, USA. The species also once occurred on neighboring islands, though it is not known when or why those populations went extinct. The population currently appears to be stable, but concerns about long-term viability of jays on Santa Cruz Island have raised the question of whether a population of jays should be re-established on one of those neighboring islands, Santa Rosa.
    [Show full text]
  • Individual Repeatability, Species Differences, and The
    Supplementary Materials: Individual repeatability, species differences, and the influence of socio-ecological factors on neophobia in 10 corvid species SUPPLEMENTARY MATERIALS 2 Figure S1 . Latency to touch familiar food in each round, across all conditions and species. Round 3 differs from round 1 and 2, while round 1 and 2 do not differ from each other. Points represent individuals, lines represent median. SUPPLEMENTARY MATERIALS 3 Figure S2 . Site effect on latency to touch familiar food in azure-winged magpie, carrion crow and pinyon jay. SUPPLEMENTARY MATERIALS 4 Table S1 Pairwise comparisons of latency data between species Estimate Standard error z p-value Blue jay - Azure-winged magpie 0.491 0.209 2.351 0.019 Carrion crow - Azure-winged magpie -0.496 0.177 -2.811 0.005 Clark’s nutcracker - Azure-winged magpie 0.518 0.203 2.558 0.011 Common raven - Azure-winged magpie -0.437 0.183 -2.392 0.017 Eurasian jay - Azure-winged magpie 0.284 0.166 1.710 0.087 ’Alal¯a- Azure-winged magpie 0.416 0.144 2.891 0.004 Large-billed crow - Azure-winged magpie 0.668 0.189 3.540 0.000 New Caledonian crow - Azure-winged magpie -0.316 0.209 -1.513 0.130 Pinyon jay - Azure-winged magpie 0.118 0.170 0.693 0.488 Carrion crow - Blue jay -0.988 0.199 -4.959 0.000 Clark’s nutcracker - Blue jay 0.027 0.223 0.122 0.903 Common raven - Blue jay -0.929 0.205 -4.537 0.000 Eurasian jay - Blue jay -0.207 0.190 -1.091 0.275 ’Alal¯a- Blue jay -0.076 0.171 -0.443 0.658 Large-billed crow - Blue jay 0.177 0.210 0.843 0.399 New Caledonian crow - Blue jay -0.808 0.228 -3.536
    [Show full text]
  • A Guide to Beijing's Common Birds
    A Guide To Beijing’s Common Birds The author birding in the Temple of Heaven Park, one of the best sites in central Beijing, especially during migration season. Beijing is a brilliant place to watch birds. More than 460 different types have been recorded in the Chinese capital. And, even inside the 2nd Ring Road, birds can be found! Here is a short guide to 26 of the most common birds that can be found in central Beijing’s parks and green spaces. During migration season (Spring and Autumn), many more species will be possible. 1. Eurasian Kestrel (Falco tinnunculus, 红隼) Eurasian Kestrel. Breeds in small numbers in the city. Eats small rodents (mice, voles) and small birds. Can see ultra-violet! 2. Spotted Dove (Streptopelia chinensis, 珠颈斑鸠) Spotted Dove is common in parks and gardens. Often on the ground. 3. Hoopoe (Upupa epops, 戴胜) The Hoopoe is one of Beijing’s most spectactular birds. It raises its crest when excited or alarmed. 4. Grey-capped Pygmy Woodpecker (Yungipicus canicapillus, 星头啄木鸟) Grey-capped Pygmy Woodpecker is Beijing’s smallest woodpecker. 5. Great Spotted Woodpecker (Dendrocopos major, 大斑啄木鸟) Great Spotted Woodpecker. Common in and around Beijing. 6. Grey-headed Woodpecker (Picus canus, 灰头绿啄木鸟) The Grey-headed Woodpecker is common in open woodland and parks. Likes to feed on the ground. Ants are its favourite food! 7. Azure-winged Magpie (Cyanopica cyanus, 灰喜鹊) The Azure-winged Magpie is sociable and often seen in small noisy flocks. 8. Red-billed Blue Magpie (Urocissa erythrorhyncha, 红嘴蓝鹊) The spectacular Red-billed Blue Magpie is a resident in some of the larger parks.
    [Show full text]
  • Bird Communities of Gambel Oak: a Descriptive Analysis
    United States Department of Agriculture Bird Communities Forest Service Rocky Mountain of Gambel Oak: A Research Station General Technical Report RMRS-GTR-48 Descriptive Analysis March 2000 Andreas Leidolf Michael L. Wolfe Rosemary L. Pendleton Abstract Leidolf, Andreas; Wolfe, Michael L.; Pendleton, Rosemary L. 2000. Bird communities of gambel oak: a descriptive analysis. Gen. Tech. Rep. RMRS-GTR-48. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 30 p. Gambel oak (Quercus gambelii Nutt.) covers 3.75 million hectares (9.3 million acres) of the western United States. This report synthesizes current knowledge on the composition, structure, and habitat relationships of gambel oak avian communities. It lists life history attributes of 183 bird species documented from gambel oak habitats of the western United States. Structural habitat attributes important to bird-habitat relationships are identified, based on 12 independent studies. This report also highlights species of special concern, provides recommendations for monitoring, and gives suggestions for management and future research. Keywords: Avian ecology, bird-habitat relationships, neotropical migrant, oakbrush, oak woodlands, scrub oak, Quercus gambelii, Western United States The Authors ______________________________________ Andreas Leidolf is a Graduate Research Assistant in the Department of Fisheries and Wildlife at Utah State University (USU). He received a B.S. degree in Forestry/Wildlife Management from Mississippi State University in 1995. He is currently completing his M.S. degree in Fisheries and Wildlife ecology at USU. Michael L. Wolfe is a Professor in the Department of Fisheries and Wildlife at USU. He received a B.S. degree in Wildlife Management at Cornell University in 1963 and his doctorate in Forestry/Wildlife Management at the University of Göttingen, Germany, in 1967.
    [Show full text]
  • Best Practice Guidelines for the Javan Green Magpie Cissa Thalassina
    EAZA Best Practice Guidelines Javan Green Magpie Cissa thalassina Author: Andrew Owen. North of England Zoological Society, Chester Zoo Email: [email protected] Name of TAG: Passerine TAG Passerine TAG Chair: David Jeggo [email protected] Edition 1: April 2019 1 EAZA Best Practice Guidelines disclaimer Copyright (April 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA Passerine TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editor in all matters related to data analysis and interpretation. EAZA Preamble Right from the very beginning it has been the concern of EAZA and the EEPs to encourage and promote the highest possible standards for husbandry of zoo and aquarium animals.
    [Show full text]
  • The Puzzling Vocal Repertoire of the South American Collared Jay, Cyanolyca Iridicyana Merida
    THE PUZZLING VOCAL REPERTOIRE OF THE SOUTH AMERICAN COLLARED JAY, CYANOLYCA VZRIDZCYANA MERIDA JOHN WILLIAM HARDY Previously, I have indicated (Kansas Sci. Bull., 42: 113, 1961) that the New World jays could be systematically grouped in two tribes on the basis of a variety of morphological and behavioral characteristics. I subsequently demonstrated (Occas. Papers Adams Ctr. Ecol. Studies, No. 11, 1964) the relationships between Cyanolyca and Aphelocoma. The tribe Aphelocomini, comprising the currently recognized genera Aphelocoma and Cyanolyca, may be characterized as follows: pattern and ornamen- tation of head simple, consisting of a dark mask, pale superciliary lineation, and no tendency for a crest; tail plain-tipped; vocal repertoire of one to three basic com- ponents, including alarm calls, flock-social calls, or both, that are nasal, querulous, and upwardly or doubly inflected. In contrast, the Cyanocoracini may be charac- tized as follows: pattern of head complex, consisting of triangular cheek patch, super- ciliary spot, and tendency for a crest; tail usually pale-tipped; vocal repertoire usu- ally complex, commonly including a downwardly inflected cuwing call and never an upwardly inflected, nasal querulous call (when repertoire is limited it almost always includes the cazo!ingcall). None of the four Mexican aphelocomine jays has more than three basic calls in its vocal repertoire. There are two exclusively South American species of CyanuZyca (C. viridicyana and C. pulchra). On the basis of the consistency with which the Mexican and Central American speciesof this genus hew to a general pattern of vocalizations as I described it for the tribe, I inferred (1964 op.
    [Show full text]