020112.Rvandyke.Liverphysiology.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

020112.Rvandyke.Liverphysiology.Pdf Author(s): Rebecca W. Van Dyke, M.D., 2012 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution – Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/ We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material. Copyright holders of content included in this material should contact [email protected] with any questions, corrections, or clarification regarding the use of content. For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use. Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition. Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers. Attribution Key for more information see: http://open.umich.edu/wiki/AttributionPolicy Use + Share + Adapt { Content the copyright holder, author, or law permits you to use, share and adapt. } Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105) Public Domain – Expired: Works that are no longer protected due to an expired copyright term. Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain. Creative Commons – Zero Waiver Creative Commons – Attribution License Creative Commons – Attribution Share Alike License Creative Commons – Attribution Noncommercial License Creative Commons – Attribution Noncommercial Share Alike License GNU – Free Documentation License Make Your Own Assessment { Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. } Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ { Content Open.Michigan has used under a Fair Use determination. } Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair. To use this content you should do your own independent analysis to determine whether or not your use will be Fair. M2 GI Sequence Liver Physiology Rebecca W. Van Dyke, MD Winter 2012 Learning Objectives • At the end of this presentation students should be able to: • 1. Describe the basic organization of the liver cell plate and its functional • consequences: • a. Blood supply • b. Configuration of hepatocytes • c. Configuration of other liver cells • d. Concentration gradients in sinusoidal blood. • 2. Describe the basic physiological processes the liver utilizes to accomplish function: • a. transport • b. metabolism • c. biotransformation • d. synthesis • e. secretion • 3. Be able to give examples of the consequences of liver damage on above processes. • 4. Be able to give examples of possible consequences of liver disease/injury on liver barrier function and hepatic regeneration. Industry Relationship Disclosures Industry Supported Research and Outside Relationships • None Cystic artery sole supply to bile duct Anatomy of Liver Acinus bile duct hepatic artery portal vein blood flow portal triad bile sinusoids Michigan Histology Collection central vein Dual Blood Supply of Liver liver Hepatic artery: 20% Portal vein: 80% spleen pancreas Liver has dual blood Regents of the University of Michigan supply: 80% portal vein 20% hepatic artery What are the Functional Consequences of….? • Increased vena caval pressure/hepatic vein obstruction? • Decreased hepatic artery blood flow? and/or Decreased portal vein blood flow? • Effects on the bile duct? Budd-Chiari Syndrome: Obstruction of the Hepatic Vein(s) Normal Budd-Chiari Hemorrhage in Dilated upstream pericentral area; sinusoids; hepatic vein atrophic/ischemic obscured hepatocytes Decreased inflow: ischemic infarction Bile Duct • Sole blood supply to the bile duct is through the hepatic artery via the cystic artery • Reduced blood flow through the hepatic artery causes ischemic injury to the extrahepatic bile ducts • Ischemia or damage to the bile duct often leads to injury, fibrosis, stricture Liver Cell Anatomy: Consider functional consequences Image showing relationship between sinusoid, sinusoid lining cells, and hepatocyte removed. Scanning Electron micrograph of Liver Cells in Liver Sinusoid American Gastroenterological Association Functional Consequences of Fenestrated Sinusoidal Endothelium? Space of Disse Other serum proteins Albumin Kupffer Cell Tissue macrophage Filtration device bacteria, endotoxin Releases inflammatory mediators that influence hepatocytes positively or negatively Looking Down a Sinusoid at a Kupffer Cell Poised to Grab Passing Bacteria Kupffer cells (red) Ito Cell/Fat-storing Cell Rare cell, located in sinusoids under endothelium Stores lipophilic materials such as Vitamin A Stimulated by chronic inflammation/alcohol converts to myofibroblast produces collagen and extracellular matrix Responsible for much of the excess fibrotic material in cirrhosis Ito Cell (Fat-storing Cell) on a Sinusoid (S) Hepatic Stellate (Ito) Cell (arrows) The Liver: The Body’s Refinery Defects in Glucose Metabolism in Liver Disease Acute liver failure: Hypoglycemia (rapid neuronal death) Chronic liver disease: Insulin resistance and diabetes (unknown mechanism) UREA Fatty acid metabolism within hepatocytes albumin hepatocyte FABP free fatty acid pool excess esterification to glucose, to mitochondria TAG amino acids for energy Apo cholin B100 e VLDL cholesterol esters Regents of the University of Michigan Greater Role of the Liver in Production and Metabolism of Lipoproteins and Lipids LDL HDL Chol. Cholesterol Gut Liver Chylomycrons CM remnants TG TG VLDL-TG BILE Cholesterol Bile acids Phospholipids Fatty Liver with Inflammation Liver as Protein Synthetic Machine Vena cava systemic outflow Liver synthesizes and secretes: Lipoproteins Albumin Clotting factors Anti-proteases (α1-anti-trypsin) Fibrinogen Complement factors Ceruloplasmin Transferrin and other binding proteins Hepatic artery carries arterial blood with blood proteins Portal vein carries venous blood from intestine, spleen and pancreas Protein Secretion Defects in Liver Disease Example Clinical Consequence Albumin Decreased plasma oncotic pressure/ edema Decreased binding of hydrophobic compounds Clotting factors : Decreased factors II, VII, IX and X Increased bleeding Fibrinogen Decreased fibrin formation in clotting Defects in Protein Synthesis/release also cause liver disease: Alpha1-Anti-trypsin Deficiency Image of pathophysiology of alpha-1- anti-trypsin deficiency removed PAS Stain Showing Retained Globs of Mutant Alpha1 Anti-trypsin Protein in Hepatocyte ER Lipoprotein release: another liver synthetic function VLDL: a combination of fat and protein The unique position and blood supply of the liver also affect liver physiology Anatomy of Liver Acinus bile duct hepatic artery portal vein blood flow portal triad bile sinusoids Michigan Histology Collection central vein Consequences of Changes in Hepatic Blood Flow and/or Oxygen Delivery? Peri-central vein (hepatic vein) clotted off with ischemic damage to hepatocytes Peri-central ischemia HV clot Peri-portal normal tissue Not all liver cells are alike. Substances found in higher concentrations in the portal vein • Albumin • CPS • FABP • HMG CoA Substances found in higher concentrations in the hepatic vein • P450s • ADH • C7αH • Cysteine • GR • Gluatamate •α 2µG • GS • GLUT-1 •α -KG Periportal Necrosis from Allyl Formate Toxicity HV PV Pericentral Necrosis from Carbon Tetrachloride Toxicity Normal cells PV HV Necrosis Bile Formation Functions of Bile • Transports material to the intestine for excretion – Drugs, toxins, xenobiotics – Cholesterol – Bilirubin – Copper • Transports bile acids to the intestine to aid in fat absorption Bile Acids • Organic acid synthesized in liver from cholesterol • Conjugated to amino acids • Secreted in bile - essential for fat digestion/absorption • Reabsorbed in distal ileum and returned to liver via portal vein Bile Acid Cholesterol OH Cholesterol: Flat (planar) hydrophobic compound compound hydrophobic (planar) Flat Cholesterol: Metamorphosis to a bile acid OH OH Lose the double bond Metamorphosis to a bile acid OH OH Shorten the side chain Metamorphosis to a bile acid COOH OH OH Add a carboxylic acid group and bend this below the plane of the rings Metamorphosis to a bile acid COOH OH OH OH Add a hydroxyl group that is bent down Metamorphosis to a bile acid Add another hydroxyl group OH COOH OH OH OH Metamorphosis to a bile acid you now have a tri-hydroxy bile acid: cholic acid OH COOH OH OH OH One more change - conjugation of an amino acid to the side chain yields Taurocholate (taurine conjugated cholic acid) OH CO NH COOH OH OH OH Conjugated tri-OH Bile Acid Hydrophobic side OH- OH- OH- COO- Hydrophilic side Biliary Lipids Bile acids from intestine To intestine for fat digestion Enterohepatic Circulation of Bile Acids: recycling is efficient Bile acids cycle between the liver and the small Bile acid synthesis
Recommended publications
  • Engineered Liver-On-A-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: a Review
    micromachines Review Engineered Liver-On-A-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review 1, 1, 2, 1, 1 Jiu Deng y, Wenbo Wei y, Zongzheng Chen y , Bingcheng Lin *, Weijie Zhao , Yong Luo 1 and Xiuli Zhang 3,* 1 State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] (J.D.); [email protected] (W.W.); [email protected] (W.Z.); [email protected] (Y.L.) 2 Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, China; [email protected] 3 College of Pharmaceutical Science, Soochow University, Suzhou 215123, China * Correspondence: [email protected] (B.L.); [email protected] (X.Z.); Tel.: +86-0411-8437-9065 (B.L.); +86-155-0425-7723 (X.Z.) These authors have equally contribution to this work. y Received: 17 September 2019; Accepted: 3 October 2019; Published: 7 October 2019 Abstract: Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Analysis of the Sinusoidal Endothelial Cell Organization During The
    CELL STRUCTURE AND FUNCTION 23: 341-348 (1998) © 1998 by Japan Society for Cell Biology Analysis of the Sinusoidal Endothelial Cell Organization during the Develop- mental Stage of the Fetal Rat Liver Using a Sinusoidal Endothelial Cell Specific Antibody, SE-1 Mamoru Morita1, Wang Qun2, Hitoshi Watanabe1, Yuko Doi1, Michio Mori3, and Katsuhiko Enomoto1'* department of Pathology, Akita University School of Medicine, Hondo, Akita 010-8543, Japan, depart- ment of Pathology, School of Basic Medicine, NormanBethune University of Medical Science, Jilin, P.R. of China, and *Department of Pathology, Sapporo Medical University School of Medicine, S-l, W-17, Chuo-ku, Sapporo 060, Japan Keywords: sinusoidal endothelial cells/SE-1 antibody/fetal rat liver ABSTRACT.The sinusoid organization during the development of fetal rat livers was studied using a SE-1 antibody, which we have previously established as a specific monoclonal antibody against rat sinusoidal endo- thelial cell (SEC). Expression and localization of the SE-1 antigen in the liver tissues of 13- to 21-day-old fe- tuses were immunofluorescently and immunoelectron microscopically examined. The first positive fluorescence was observed in the immature liver of 15-day-old fetuses. The initial positive staining was randomly distrib- uted in the liver parenchyma and showed no direct relation to the large vessels which may be derived from the fetal vitelline veins. The positive linear staining increased in number and connected with each other during the course of development. The SE-1 staining pattern and the sinusoidal arrangement became similar to those of the adult liver after 20th day of gestation. Immunoelectron microscopically, the immature SEC showed a weak positive reaction for the SE-1 antigen at their membraneand was observed together with immature hepato- cytes and hematopoietic cells in the 15-day-old fetal liver.
    [Show full text]
  • Title of My Thesis
    Development of an in vitro 3D Printed Liver Sinusoid Model Soumya Sethi A Dissertation Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master of Technology Department of Biomedical Engineering June, 2018 Declaration I declare that this written submission represents my ideas in my own words, and where others’ ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be a cause for disciplinary action by the Institute and can also evoke penal action from the sources that have thus not been properly cited, or from whom proper permission has not been taken when needed. (Signature) Soumya Sethi BM16MTECH11007 (Roll No) ii Approval Sheet iii Acknowledgements I would like to thank my thesis supervisor Dr Falguni Pati for his continuous guidance. I would also like to thank my lab members especially Shibu Chameettachal, Shyama Sasikumar, Sriya for supporting me and helping me out whenever required. They have been a continuous source of inspiration for me, without their passionate participation and inputs, the project could not have been successfully conducted. iv Abstract Liver is one of the most remarkable organs of the human body as it performs various vital functions namely metabolism of fats and carbohydrates, drugs, detoxification, production of bile and has a capacity to regenerate. The intricate functional units of the liver called the sinusoids are of immense interest as they are early targets of many drugs and toxicants as well as have been reported to play a significant role in initiating liver regeneration and contribute to the pathophysiology of many liver diseases.
    [Show full text]
  • Elimination Pathways of Nanoparticles † ‡ † ‡ ◆ † ‡ § ◆ † ‡ † ‡ Wilson Poon, , Yi-Nan Zhang, , , Ben Ouyang, , , , Benjamin R
    Article Cite This: ACS Nano 2019, 13, 5785−5798 www.acsnano.org Elimination Pathways of Nanoparticles † ‡ † ‡ ◆ † ‡ § ◆ † ‡ † ‡ Wilson Poon, , Yi-Nan Zhang, , , Ben Ouyang, , , , Benjamin R. Kingston, , Jamie L. Y. Wu, , ∥ ⊥ † ‡ # ∇ ○ Stefan Wilhelm, , and Warren C. W. Chan*, , , , , † Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada ‡ Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada § MD/PhD Program, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada ∥ Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States ⊥ Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States # Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada ∇ Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada ○ Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada *S Supporting Information ABSTRACT: Understanding how nanoparticles are eliminated from the body is required for their successful clinical translation. Many promising nanoparticle formulations for in vivo medical applications are large (>5.5 nm) and nonbiodegradable, so they cannot be eliminated renally. A proposed pathway for these nanoparticles is hepatobiliary from https://pubs.acs.org/doi/10.1021/acsnano.9b01383. elimination, but their transport has
    [Show full text]
  • The Influence of Chronic Liver Diseases on Hepatic Vasculature
    micromachines Review The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review Alican Özkan 1,* , Danielle Stolley 2, Erik N. K. Cressman 3 , Matthew McMillin 4,5 , Sharon DeMorrow 4,5,6 , Thomas E. Yankeelov 2,7,8,9,10 and Marissa Nichole Rylander 1,2,7 1 Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA; [email protected] 2 Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA; [email protected] (D.S.); [email protected] (T.E.Y.) 3 Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 4 Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA; [email protected] (M.M.); [email protected] (S.D.) 5 Central Texas Veterans Health Care System, Temple, TX 76504, USA 6 Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA 7 Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA 8 Departments of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA 9 Department of Oncology, The University of Texas, Austin, TX 78712, USA 10 Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 78712, USA * Correspondence: [email protected]; Tel.: +1-512-806-9062 Received: 16 April 2020; Accepted: 4 May 2020; Published: 9 May 2020 Abstract: In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury.
    [Show full text]
  • Original Article Rat Liver Sinusoidal Dilatation Induced by Perfusion In
    Int J Clin Exp Med 2016;9(6):11284-11291 www.ijcem.com /ISSN:1940-5901/IJCEM0021986 Original Article Rat liver sinusoidal dilatation induced by perfusion in vitro through portal vein alone, hepatic artery alone, and portal vein together with hepatic artery Hefang Shen1, Jing Dong1, Lingling Xia2, Jianjian Xu3, Lili Xu1 1School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, People’s Republic of China; 2Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui, People’s Republic of China; 3School of Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China Received December 15, 2015; Accepted February 4, 2016; Epub June 15, 2016; Published June 30, 2016 Abstract: The techniques for liver perfusion have been recommended in order to protect liver grafts prior to trans- plantation. We compared portal vein alone, hepatic artery alone, and dual perfusion through portal vein together with hepatic artery perfusion techniques in rat livers analyzed in histology. Rat livers were treated for 30 min in situ warm ischemia and excised and directly placed to mimic conventional cold storage for 4 hours followed by different routes of cold perfusion. In three experimental groups, five livers were given portal vein perfusion in group one. In group two, five livers were subjected to hepatic artery perfusion and in group three five livers received both portal vein and hepatic artery perfusion. Histological samples were taken before the beginning of the perfusion, 30 min- utes, and 60 minutes after starting of the perfusion. Rat livers, received portal vein perfusion in group one, revealed remarkable sinusoidal dilatation increasingly with augmented perfusion time.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Hepatic Sinusoidal Endothelial Cells 5
    CHAPTER 5 Hepatic Sinusoidal Endothelial Cells 5 Roman E. Perri, Vijay Shah 5.1 Development and Structure Hepatic sinusoidal endothelial cells (HSEC) are a morphologically distinct population of cells that form the lining of liver sinusoids. Features that dis- tinguish HSEC from endothelial cells in other or- gans and in larger liver vessels are the presence of multiple fenestrae throughout the cells and the lack of an underlying basement membrane [3, 7, 60, 72]. The sinusoids are positioned between hepato- cyte plates and initiate at the portal tract and termi- nate at the central vein. Sinusoids carry blood that converges in the liver from the portal venous sup- ply, as well as from the hepatic artery [76] (Fig. 5.1). Sinusoids are separated from adjacent hepatocytes by the perisinusoidal space, also known as the space of Disse. Due to their position, HSEC are the first cells in contact with blood flow into the sinusoids and serve to compartmentalize the vascular sinu- soidal channels from the hepatic parenchyma [60, 72]. The hepatic sinusoids range in diameter from Fig. 5.1. Vasculature architecture of the liver. Blood flow enters 4 µm near the portal triad to 5.5 µm near the cen- the liver via the portal vein (PVb) as well as the hepatic artery tral vein [30]. Because they are smaller than both (HAb). While portal blood enters directly into the sinusoids (S), red and white blood cells, there is distortion of both hepatic arterial blood perfuses into distinct anatomic locations cells and the sinusoids during passage of blood cells prior to re-entering the sinusoids.
    [Show full text]
  • Critical Role of LSEC in Post-Hepatectomy Liver Regeneration and Failure
    International Journal of Molecular Sciences Review Critical Role of LSEC in Post-Hepatectomy Liver Regeneration and Failure Maxime De Rudder 1, Alexandra Dili 1,2, Peter Stärkel 1,3 and Isabelle A. Leclercq 1,* 1 Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium; [email protected] (M.D.R.); [email protected] (A.D.); [email protected] (P.S.) 2 HPB Surgery Unit, Centre Hospitalier Universitaire UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium 3 Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium * Correspondence: [email protected]; Tel.: +32-2-764-5273 Abstract: Liver sinusoids are lined by liver sinusoidal endothelial cells (LSEC), which represent approximately 15 to 20% of the liver cells, but only 3% of the total liver volume. LSEC have unique functions, such as fluid filtration, blood vessel tone modulation, blood clotting, inflammatory cell recruitment, and metabolite and hormone trafficking. Different subtypes of liver endothelial cells are also known to control liver zonation and hepatocyte function. Here, we have reviewed the origin of LSEC, the different subtypes identified in the liver, as well as their renewal during homeostasis. The liver has the exceptional ability to regenerate from small remnants. The past decades have seen increasing awareness in the role of non-parenchymal cells in liver regeneration despite not being the most represented population. While a lot of knowledge has emerged, clarification is needed regarding the role of LSEC in sensing shear stress and on their participation in the inductive phase of regeneration by priming the hepatocytes and delivering mitogenic factors.
    [Show full text]
  • Experimentally Impeded Are Described. Vision
    Br. J. exp. Path. (1976) 57, 604 EFFECT OF HEPATIC VENOUS OUTFLOW OBSTRUCTION ON PORES AND FENESTRATIONS IN SINUSOIDAL ENDOTHELIUM* W. NOPANITAYA, J. C. LAMB, J. W. GRISHAMI AND J. L. CARSON Fromn the Department of Pathology, School of MIedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514 Received( for publication Junie 15, 1976 Summary.-The ultrastructure of pores and fenestrations in hepatic sinusoidal endothelial cells was examined following partial surgical occlusion of the supra- hepatic portion of the inferior vena cava. Within 12 h after partial obstruction of hepatic venous outflow, endothelial pores ( < 0-1 [km in diameter) and sieve plates in the distal halves of sinusoids were greatly reduced in number or were totally absent, and they were replaced by large fenestrations ( < 1 0 um in diameter). These results suggest that pores forming sieve plates may fuse to form large fenestrations. The findings also indicate that sinusoidal hypertension and hypoxia associated with obstruction of hepatic venous outflow alter the distribution of pores and fenestrations in sinusoidal endothelium. THE ultrastructure of hepatic sinusoidal MATERIALS AND METHODS endothelial cells of several species recently Experiments were carried out oni female has been established by studies employing Wlistar albino rats. The animals were retired transmission (TEM) and scanning (SEM) breeders weighing approximately 325 g. They electron microscopy (Fawcett, 1955; Bruni were kept in wire bottom cages and fed Purina laboratory chow and tap water ad libitum for at and Porter, 1965; Wisse, 1970; Orci, least 3 weeks before being used for this study. Matter and Rouiller, 1971; Ogawa et al., All animals were anaesthetized by injecting 1973; Brooks and Haggis, 1973; Motta and sodium pentobarbital (5 mg/100 g body weight) Porter, 1974; Motta, 1975; Grisham et al., i.p.
    [Show full text]
  • Hepatic Artery
    Ingegneria delle tecnologie per la salute Fondamenti di anatomia e istologia aa. 2019-20 Lesson 7. Digestive system and peritoneum Liver • hepatic artery delivers oxygenated blood from heart to liver, hepatic portal vein delivers partially deoxygenated blood containing nutrients (+ drugs and toxins) absorbed from the small intestine and actually supplies more oxygen to liver than do much smaller hepatic arteries; after processing bloodborne nutrients and toxins, liver releases nutrients needed by other cells back into the blood, which drains into central vein and then through hepatic vein to inferior vena cava. • hepatic portal circulation = all blood from alimentary canal passes through liver (explaining liver most common site for alimentary canal cancers metastasis) Liver: Histology = 3 main components: 1 hepatocytes [liver’s main cell type, accounting for around 80% of liver's volume, playing a role in a wide variety of secretory, metabolic, and endocrine functions; plates of hepatocytes called hepatic laminae radiate outward from portal vein in each hepatic lobule] = from their central position, hepatocytes process nutrients, toxins, and waste materials carried by blood: materials such as bilirubin processed and excreted into bile canaliculi, other materials including proteins, lipids, and carbohydrates processed and secreted into sinusoids or just stored in cells until called upon. Liver: Histology = 3 main components: 2 bile canaliculi [grooves in cell membranes between adjacent hepatocytes accumulating bile produced by hepatocytes:
    [Show full text]