The Lizards of India: an Overview T.S.N
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Ggt's Recommendations on the Amendment Proposals for Consideration at the Eighteenth Meeting of the Conference of the Parties
GGT’S RECOMMENDATIONS ON THE AMENDMENT PROPOSALS FOR CONSIDERATION AT THE EIGHTEENTH MEETING OF THE CONFERENCE OF THE PARTIES TO CITES For the benefit of species and people (Geneva, 2019) ( GGT’s motto ) A publication of the Global Guardian Trust. 2019 Global Guardian Trust Higashikanda 1-2-8, Chiyoda-ku, Tokyo 101-0031 Japan GLOBAL GUARDIAN TRUST GGT’S RECOMMENDATIONS ON THE AMENDMENT PROPOSALS FOR CONSIDERATION AT THE EIGHTEENTH MEETING OF THE CONFERENCE OF THE PARTIES TO CITES (Geneva, 2019) GLOBAL GUARDIAN TRUST SUMMARY OF THE RECOMMENDATIONS Proposal Species Amendment Recommendation 1 Capra falconeri heptneri markhor I → II Yes 2 Saiga tatarica saiga antelope II → I No 3 Vicugna vicugna vicuña I → II Yes 4 Vicugna vicugna vicuña annotation Yes 5 Giraffa camelopardalis giraffe 0 → II No 6 Aonyx cinereus small-clawed otter II → I No 7 Lutogale perspicillata smooth-coated otter II → I No 8 Ceratotherium simum simum white rhino annotation Yes 9 Ceratotherium simum simum white rhino I → II Yes 10 Loxodonta africana African elephant I → II Yes 11 Loxodonta africana African elephant annotation Yes 12 Loxodonta africana African elephant II → I No 13 Mammuthus primigenius wooly mammoth 0 → II No 14 Leporillus conditor greater stick-nest rat I → II Yes 15 Pseudomys fieldi subsp. Shark Bay mouse I → II Yes 16 Xeromys myoides false swamp rat I → II Yes 17 Zyzomys pedunculatus central rock rat I → II Yes 18 Syrmaticus reevesii Reeves’s pheasant 0 → II Yes 19 Balearica pavonina black crowned crane II → I No 20 Dasyornis broadbenti rufous bristlebird I → II Yes 21 Dasyornis longirostris long-billed bristlebird I → II Yes 22 Crocodylus acutus American crocodile I → II Yes 23 Calotes nigrilabris etc. -
The Trade in Tokay Geckos in South-East Asia
Published by TRAFFIC, Petaling Jaya, Selangor, Malaysia © 2013 TRAFFIC. All rights reserved. All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction in full or in part of this publication must credit TRAFFIC as the copyright owner. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered trademark ownership is held by WWF. TRAFFIC is a strategic alliance of WWF AND IUCN. Layout by Olivier S Caillabet, TRAFFIC Suggested citation: Olivier S. Caillabet (2013). The Trade in Tokay Geckos Gekko gecko in South-East Asia: with a case study on Novel Medicinal Claims in Peninsular Malaysia TRAFFIC, Petaling Jaya, Selangor, Malaysia ISBN 978-983-3393-36-7 Photograph credit Cover: Tokay Gecko in Northern Peninsular Malaysia (C. Gomes/TRAFFIC) The Trade in Tokay Geckos Gekko gecko in South-East Asia: with a case study on Novel Medicinal Claims in Peninsular Malaysia Olivier S. Caillabet © O.S. Caillabet/TRAFFIC A pet shop owner in Northern Peninsular Malaysia showing researchers a Tokay Gecko for sale TABLE OF CONTENTS Acknowledgements -
On the Andaman and Nicobar Islands, Bay of Bengal
Herpetology Notes, volume 13: 631-637 (2020) (published online on 05 August 2020) An update to species distribution records of geckos (Reptilia: Squamata: Gekkonidae) on the Andaman and Nicobar Islands, Bay of Bengal Ashwini V. Mohan1,2,* The Andaman and Nicobar Islands are rifted arc-raft of 2004, and human-mediated transport can introduce continental islands (Ali, 2018). Andaman and Nicobar additional species to these islands (Chandramouli, 2015). Islands together form the largest archipelago in the In this study, I provide an update for the occurrence Bay of Bengal and a high proportion of terrestrial and distribution of species in the family Gekkonidae herpetofauna on these islands are endemic (Das, 1999). (geckos) on the Andaman and Nicobar Islands. Although often lumped together, the Andamans and Nicobars are distinct from each other in their floral Materials and Methods and faunal species communities and are geographically Teams consisted of between 2–4 members and we separated by the 10° Channel. Several studies have conducted opportunistic visual encounter surveys in shed light on distribution, density and taxonomic accessible forested and human-modified areas, both aspects of terrestrial herpetofauna on these islands during daylight hours and post-sunset. These surveys (e.g., Das, 1999; Chandramouli, 2016; Harikrishnan were carried out specifically for geckos between and Vasudevan, 2018), assessed genetic diversity November 2016 and May 2017, this period overlapped across island populations (Mohan et al., 2018), studied with the north-east monsoon and summer seasons in the impacts of introduced species on herpetofauna these islands. A total of 16 islands in the Andaman and and biodiversity (e.g., Mohanty et al., 2016a, 2019), Nicobar archipelagos (Fig. -
Notes on Egg Laying Sites of Calodactylodes Aureus (Beddome, 1870) in Tirupattur Forest Division, Southern India
SHORT NOTE The Herpetological Bulletin 131, 2015: 24-25 Notes on egg laying sites of Calodactylodes aureus (Beddome, 1870) in Tirupattur Forest Division, Southern India. AYUTHAVEL KALAIMANI Aarohi, No.192,7th Block, Jayanagar, Bangalore 560011 Karnataka, India Email: [email protected] INTRODUCTION The Indian golden gecko Calodactylodes aureus (Beddome, 1870) is endemic to the Eastern Ghats mountain range of peninsular India (Bauer & Das, 2000; Kalaimani & Nath, 2012, 2013; Reddy et al., 2013; Srinivasalu et al.,2014). It prefers rocky areas with deep stream valleys and has been observed at elevations between 50 and 1000 m and reported to lay eggs in communal egg deposition sites (Bauer & Das, 2000; Javed et al., 2007) on rocky surfaces, mostly on vertical rocks in both natural and human-inhabited areas. This paper gives information on mass egg laying sites of C. aureus in Tirupattur Forest Division, Eastern Ghats, Tamil Nadu. METHODS Figure 1. Example of an adult male C. aureus found at Tirupat- The study was conducted in Tirupattur Forest Division tur Forest Division, State of Tamil Nadu, India 12°32’35.69’’ N 78°37’13.96’’ E (300-1300 m a.s.l.).Tamil Nadu. These forest divisions have four forest ranges; Alangayam, Ambur, Tirupattur and Singarapettai. The study Forest Range Number of Total number Number of egg area has 42 forest beats all of which were surveyed for the males of lizards laying sites study. The area has six forest types namely, southern dry Ambur 61 266 51 mixed deciduous forests, southern dry deciduous forests, Alangayam 34 268 75 southern dry savanna forests, dry bamboo brakes, dry tropical riverine forests, southern tropical thorn forests and southern Tirupattur 14 169 52 scrub forests (Champion & Seth, 1968). -
Reptile Rap Newsletter of the South Asian Reptile Network ISSN 2230-7079 No.15 | January 2013 Date of Publication: 22 January 2013 1
Reptile Rap Newsletter of the South Asian Reptile Network No.15 | January 2013 ISSN 2230-7079 Date of publication: 22 January 2013 1. Crocodile, 1. 2. Crocodile, Caiman, 3. Gharial, 4.Common Chameleon, 5. Chameleon, 9. Chameleon, Flap-necked 8. Chameleon Flying 7. Gecko, Dragon, Ptychozoon Chamaeleo sp. Fischer’s 10 dilepsis, 6. &11. Jackson’s Frill-necked 21. Stump-tailed Skink, 20. Gila Monster, Lizard, Green Iguana, 19. European Iguana, 18. Rhinoceros Antillean Basilisk, Iguana, 17. Lesser 16. Green 15. Common Lizard, 14. Horned Devil, Thorny 13. 12. Uromastyx, Lizard, 34. Eastern Tortoise, 33. 32. Rattlesnake Indian Star cerastes, 22. 31. Boa,Cerastes 23. Python, 25. 24. 30. viper, Ahaetulla Grass Rhinoceros nasuta Snake, 29. 26. 27. Asp, Indian Naja Snake, 28. Cobra, haje, Grater African 46. Ceratophrys, Bombina,45. 44. Toad, 43. Bullfrog, 42. Frog, Common 41. Turtle, Sea Loggerhead 40. Trionychidae, 39. mata Mata 38. Turtle, Snake-necked Argentine 37. Emydidae, 36. Tortoise, Galapagos 35. Turtle, Box 48. Marbled Newt Newt, Crested 47. Great Salamander, Fire Reptiles, illustration by Adolphe Millot. Source: Nouveau Larousse Illustré, edited by Claude Augé, published in Paris by Librarie Larousse 1897-1904, this illustration from vol. 7 p. 263 7 p. vol. from 1897-1904, this illustration Larousse Librarie by published in Paris Augé, Claude by edited Illustré, Larousse Nouveau Source: Millot. Adolphe by illustration Reptiles, www.zoosprint.org/Newsletters/ReptileRap.htm OPEN ACCESS | FREE DOWNLOAD REPTILE RAP #15, January 2013 Contents A new record of the Cochin Forest Cane Turtle Vijayachelys silvatica (Henderson, 1912) from Shendurney Wildlife Sanctuary, Kerala, India Arun Kanagavel, 3–6pp New Record of Elliot’s Shieldtail (Gray, 1858) in Seshachalam Biosphere Reserve, Eastern Ghats, Andhra Pradesh, India M. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Download Download
HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH. -
Biodiversity Profile of Afghanistan
NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores -
Parachute Geckos Free Fall Into Synonymy Gekko Phylogeny, And
Molecular Phylogenetics and Evolution 146 (2020) 106731 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Parachute geckos free fall into synonymy: Gekko phylogeny, and a new T subgeneric classifcation, inferred from thousands of ultraconserved elements ⁎ Perry L. Wood Jr.a, , Xianguang Guoa,b, Scott L. Traversa, Yong-Chao Sua,c, Karen V. Olsona, Aaron M. Bauerd, L. Lee Grismere, Cameron D. Silerf, Robert G. Moylea, Michael J. Anderseng, Rafe M. Browna a Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China c Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan d Department of Biology and Center for Biodiversity and Ecosystem Stewardship , 800 Lancaster Avenue, Villanova University, Villanova, PA 19085, USA e Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA 92515, USA f Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072-7029, USA g Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA ARTICLE INFO ABSTRACT Keywords: Recent phylogenetic studies of gekkonid lizards have revealed unexpected, widespread paraphyly and polyphyly Luperosaurus among genera, unclear generic boundaries, and a tendency towards the nesting of taxa exhibiting specialized, Ptychozoon apomorphic morphologies within geographically widespread “generalist” clades. This is especially true in Phylogenomics Australasia, where monophyly of Gekko proper has been questioned with respect to phenotypically ornate fap- Species tree legged geckos of the genus Luperosaurus, the Philippine false geckos of the genus Pseudogekko, and even the Subgenera elaborately “derived” parachute geckos of the genus Ptychozoon. -
First Record of the Smooth-Backed Parachute Gecko Ptychozoon Lionotum Annandale 1905 from the Indian Mainland
2001 Asiatic Herpetological Research Vol. 9, pp. 101–106 First Record of the Smooth-Backed Parachute Gecko Ptychozoon lionotum Annandale 1905 from the Indian Mainland SAMRAAT PAWAR1 AND SAYANTAN BISWAS2 Wildlife Institute of India, Chandrabani, Dehradun– 248 001, India. Present addresses: 13/21, Mohanwadi, Alandi Road, Yerawada, Pune-411006, India. 2 30/3 Jheel Road, Calcutta-700031, India. Abstract.- The smooth-backed parachute gecko, Ptychozoon lionotum is reported from the mainland India for the first time. The nearest known previous record was from Pegu, Myanmar, about 700 km southeast of the previous location. The species was collected in Langtlai and seen in the Ngengpui Wildlife Sanctuary, both in south Mizoram. The collected individual was kept in captivity for four and a half months. during this time, opportunistic observations on activity pattern, food habits, escape and parachuting behavior were made. Both individuals showed slow, deliberate pre-escape movement previously unrecorded for Ptychozoon. Information on morphological characters and morphometric measurements is presented. Explanations for the disjunct distribution are discussed. Key words.- Reptilia, Gekkonidae, Ptychozoon, parachute gecko, Northeast India, Myanmar, distribution, biogeography, behavior Ptychozoon is a genus of arboreal geckos distributed over much of Southeast Asia, primarily in moist tropi- cal evergreen and semi-evergreen forests (Brown, 1999; Brown et al. 1997; Smith, 1935). At present, six species are recognized under the genus: Ptychozoon kuhli, P. horsfieldii, P. lionotum, P. intermedium, P. rhacophorus and P. trinotaterra (Brown et al., 1997; Brown, 1999). To date, the only species reported for India is Ptychozoon kuhli, from the Nicobar Islands (De Rooij, 1915; Smith, 1935; Tiwari, 1961). -
Time Explains Regional Richness Patterns Within Clades More Often Than Diversification Rates Or Area
vol. 193, no. 4 the american naturalist april 2019 Time Explains Regional Richness Patterns within Clades More Often than Diversification Rates or Area Hong Li1,2 and John J. Wiens2,* 1. Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China; 2. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 Submitted December 8, 2017; Accepted November 14, 2018; Electronically published February 20, 2019 Online enhancements: appendixes. Dryad data: https://dx.doi.org/10.5061/dryad.72b792p. abstract: Most groups of organisms occur in multiple regions and 2007). But richness patterns are far more varied and wide- have different numbers of species in different regions. These richness spread. For example, almost every group of organisms occurs patterns are directly explained by speciation, extinction, and dispersal. in multiple regions and typically has different numbers of Thus, regional richness patterns may be explained by differences in species in each region. What general factors might explain when regions were colonized (more time for speciation in regions col- these patterns? onized earlier), differences in how often they were colonized, or differ- Within a given region, species richness depends directly fi ences in diversi cation rates (speciation minus extinction) among re- on three main processes: speciation, extinction, and dispersal gions (with diversification rates potentially influenced by area, climate, and/or many other variables). Few studies have tested all three factors, (e.g., Ricklefs 1987). Speciation and dispersal add species to a and most that did examined them only in individual clades. Here, we an- region, whereas extinction subtracts species. -
Active Tails Enhance Arboreal Acrobatics in Geckos
Active tails enhance arboreal acrobatics in geckos Ardian Jusufi, Daniel I. Goldman*, Shai Revzen, and Robert J. Full† Department of Integrative Biology, University of California, Berkeley, CA 94720 Communicated by David B. Wake, University of California, Berkeley, CA, January 15, 2008 (received for review November 13, 2007) Geckos are nature’s elite climbers. Their remarkable climbing feats surface [tail tip to wall distance of 7.7 Ϯ 2.2 mm (mean Ϯ SE)] have been attributed to specialized feet with hairy toes that uncurl when footholds were secure. Next, we inserted a slippery patch and peel in milliseconds. Here, we report that the secret to the into the high-traction vertical track. When geckos reached the gecko’s arboreal acrobatics includes an active tail. We examine the patch, their forefoot slipped toward their body (undergoing large tail’s role during rapid climbing, aerial descent, and gliding. We displacements of 2.2 Ϯ 0.3 foot lengths). Foot slippage initiated show that a gecko’s tail functions as an emergency fifth leg to a tail response that appeared to compensate for the lost grip of prevent falling during rapid climbing. A response initiated by the forefoot [see supporting information (SI) Movies 1 and 2]. slipping causes the tail tip to push against the vertical surface, Geckos running on a vertical high-traction surface began to thereby preventing pitch-back of the head and upper body. When move their tail tip toward the wall Ϸ28.9 Ϯ 6.3 ms after forefoot pitch-back cannot be prevented, geckos avoid falling by placing contact with the low-traction patch (see Materials and Methods their tail in a posture similar to a bicycle’s kickstand.