Evolution of Chlorophyll and Bacteriochlorophyll
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1 Introduction
Introduction 1 1 Introduction Tetrapyrroles belong to a group of molecules with a common structure. They are synthesized in a branched pathway, in which various end products are formed to different amounts. The most abundant cyclic tetrapyrroles are chlorophyll (Chl) and heme, which are characterized by a chelated magnesium and ferrous ion, respectively. Chlorophyll is involved in light absorption and energy transduction during photosynthesis. Heme is a cofactor of hemoglobin, cytochromes, P450 mixed-function oxygenases, and catalases. Other members of the class of tetrapyrroles include siroheme (the prosthetic group of nitrite and sulphite reductases) and phytochromobilin, the chromophore of phytochrome, which is involved in light perception. Tetrapyrrole biosynthesis has been the subject of numerous studies over several decades. But genetic and biochemical characterization of tetrapyrrole biosynthesis has progressed by using approaches to genetically dissect the tetrapyrrole biosynthetic pathway. Pigment-deficient mutants and antisense technology have proved to be useful for examining the mechanisms of metabolic control or for analyzing biochemically the enzymatic steps which are affected by the mutation or by the antisense RNA expression. Tetrapyrrole intermediates are highly photoreactive. They can easily be excited and transfer the energy or electrons to O2. Then reactive oxygen species (ROS) are produced upon exposure to light and oxygen. Under normal growth conditions the risk of photooxidative damage from intermediates in tetrapyrrole biosynthesis is low. Excessive accumulation of such intermediates is the result of deregulation of tetrapyrrole biosynthesis. Toxic effects of porphyrins are evident in human patients with deficiencies of one of the enzymes of heme biosynthesis. These patients are suffering from metabolic diseases, which are called porphyrias (Moore, 1993). -
Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R. -
TION of BUCKWHEAT. It Has Been Known for a Long Time That Certain
PHOTOSENSITIZATION OF ANIMALS AFTER THE INGES- TION OF BUCKWHEAT. BY CHARLES SHEARD, PH.D., HAROLD D. CAYLOR, M.D., AND CARL SCHLOTTHAUER, D.V.M. (From tke Section on Pkysics and Biophysical Research, tke Section on Surgical Pathology, and the Division of Experimental Palhdogy and Surgery, Mayo Clinic and The Mayo Foundation, Rochester, Minnesota.) (Received for publication,~'March 1, 1928.) It has been known for a long time that certain animals, following the ingestion of various substances, are rendered sensitive to certain types of radiant energy. The present study covers biologic and physical observations on the degree of sensitization, the character of the sensitizing light and the nature of the photodynamic substance of buckwheat. White rabbits, mice, rats, goats, swine, dogs and varicolored guinea pigs were studied. Sunlight, carbon arc lamp (Efka or Hoffman) with Conradty-Norris vacuum carbon electrodes and quartz mercury vapor arcs (Victor X-Ray Corporation), both with and without various filters, were employed for irradiation. All of these sources contain infra-red, visible and ultra-violet radiations. I~SLr~ OF LITERATURE. Considerable literature, especially European, has appeared on the subject of diseases in animals and man brought about by optical sensitization. Somewhat detailed accounts of the contributions relative to diseases due to exogenous sensi- tization are to be found in the brochures by Hausmann and by Mayer. Years ago European stockmen found that in certain animals which had ingested buckwheat (plant or seed), erythema, itching, edema and convulsions developed and, in many cases, paralysis and death, on exposure to out-of-door sunshine. However, untoward symptoms did not arise if the animals were kept indoors or in partial darkness and they recovered from the sensitization induced by eating certain plants if they were removed from the light early in the onset of the symp- toms. -
Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V. -
Biofilm Forming Purple Sulfur Bacteria Enrichment from Trunk River
Different biofilm-forming purple sulfur bacteria enriched from Trunk River Xiaolei Liu Abstract Three different types of biofilm were developed on the bottles of purple sulfur bacteria enrichments. The original inoculum is a piece of sea grass covered with purple biofilm that collected from Trunk River during the course. Microscopy imaging showed that two of the three biofilms were apparently composed of two major species. MonoFISH probing supports the recognition of purple sulfur bacteria as Chromatium in the class of gammaproteobacteria which grow together with a deltaproteobacteria species. Such a combination of Chromatium colonize with deltaproteobacteria species is also originally present in the purple biofilm on sea grass. Further work is needed to investigate the potential interactions between these two species. Introduction Purple sulfur bacteria are photosynthetic anearobes in the phylum of Proteobacteria (Fowler et al., 1984), which is capable of fixing carbon dioxide with sulfide other than water as the electron donors. Since oxygen is not produced during their photosynthesis these purple sulfur bacteria are also known as anoxygenic photoautotrophs. Most purple sulfur bacteria synthesize bacteriochlorophyll and carotenoids as their light-harvesting pigment complex (Iba et al., 1988). Because their photosynthesis reQuires anoxic condition and sulfide, these purple sulfur bacteria are often found in organic rich aquatic environments where sulfate reducing heterotrophic bacteria thrive. Both planktonic and benthic species of purple sulfur bacteria exist in different sulfidic environments. In the habitat of stratified meromictic lakes with external sulfate input, such as Green Lake, Mahoney Lake and Lake Cadagno, the phototrophic chemocline microbial communities are often dominated by planktonic purple sulfur bacteria living on sulfide diffused up from organic rich sediment (e.g. -
Chlorophyll Biosynthesis
Chlorophyll Biosynthesis: Various Chlorophyllides as Exogenous Substrates for Chlorophyll Synthetase Jürgen Benz and Wolfhart Rüdiger Botanisches Institut, Universität München, Menziger Str. 67, D-8000 München 19 Z. Naturforsch. 36 c, 51 -5 7 (1981); received October 10, 1980 Dedicated to Professor Dr. H. Merxmüller on the Occasion of His 60th Birthday Chlorophyllides a and b, Protochlorophyllide, Bacteriochlorophyllide a, 3-Acetyl-3-devinylchlo- rophyllide a, Pyrochlorophyllide a, Pheophorbide a The esterification of various chlorophyllides with geranylgeranyl diphosphate was investigated as catalyzed by the enzyme chlorophyll synthetase. The enzyme source was an etioplast membrane fraction from etiolated oat seedlings ( Avena sativa L.). The following chlorophyllides were prepared from the corresponding chlorophylls by the chlorophyllase reaction: chlorophyllide a (2) and b (4), bacteriochlorophyllide a (5), 3-acetyl-3-devinylchlorophyllide a (6), and pyro chlorophyllide a (7). The substrates were solubilized with cholate which reproducibly reduced the activity of chlorophyll synthetase by 40-50%. It was found that the following compounds were good substrates for chlorophyll synthetase: chlorophyllide a and b, 3-acetyl-3-devinylchloro- phyllide a, and pyrochlorophyllide a. Only a poor or no reaction was found with protochloro phyllide, pheophorbide a, and bacteriochlorophyllide. This difference of reactivity was not due to distribution differences of the substrates between solution and pelletable membrane fraction. Furthermore, no interference between good and poor substrate was detected. Structural features necessary for chlorophyll synthetase substrates were discussed. Introduction Therefore no exogenous 2 was applied. The only substrate was 2 formed by photoconversion of endo The last steps of chlorophyll a (Chi a) biosynthe genous Protochlide (1) in the etioplast membrane. -
Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX). -
Structure of the Biliverdin Radical Intermediate in Phycocyanobilin
Published on Web 01/21/2009 Structure of the Biliverdin Radical Intermediate in Phycocyanobilin:Ferredoxin Oxidoreductase Identified by High-Field EPR and DFT Stefan Stoll,*,† Alexander Gunn,† Marcin Brynda,†,| Wesley Sughrue,†,‡ Amanda C. Kohler,‡,⊥ Andrew Ozarowski,§ Andrew J. Fisher,†,‡ J. Clark Lagarias,‡ and R. David Britt*,† Department of Chemistry and Section of Molecular and Cellular Biology, UniVersity of California DaVis, 1 Shields AVenue, DaVis, California 95616, and National High Magnetic Field Laboratory, Florida State UniVersity, 1800 East Paul Dirac DriVe, Tallahassee, Florida 32310 Received October 31, 2008; E-mail: [email protected] (S.S.); [email protected] (R.D.B.) The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two- step four-electron reduction of biliverdin IXR to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrroleringsareprotonated.Thisexperimentallconfirmsthereactionmechanismrecentlyproposed(Tu, et al. -
Bacteriochlorophyll Biosynthesis in Rhodopseudomonas Capsulata in Response to Oxygen
JOURNAL OF BACTERIOLOGY, Nov. 1983, p. 686-694 Vol. 156, No. 2 0021-9193/83/110686-09$02.00/0 Copyright © 1983, American Society for Microbiology Transcriptional Regulation of Several Genes for Bacteriochlorophyll Biosynthesis in Rhodopseudomonas capsulata in Response to Oxygen ALAN J. BIELt AND BARRY L. MARRSt* E. A. Doisy Department ofBiochemistry, Saint Louis University School of Medicine, St. Louis, Missouri 63104 Received 27 June 1983/Accepted 23 August 1983 Although it has been shown that bacteriochlorophyll synthesis in Rhodopseudo- monas capsulata is repressed by oxygen and high light intensity, few details of regulation by these environmental factors are known, primarily owing to a lack of assays for the biosynthetic enzymes. We have examined regulation at the transcriptional level by isolating and studying fusions between the Mu dl(Apr lac) phage and various bch genes. In these strains, the lacZ gene of the phage is under the control of bch gene promoters. We have found that atmospheric oxygen tension (20% 02) reduces the expression of these fusions at least twofold compared with low oxygen tension (2% 02). Therefore, transcription of the bchA, bchB, bchC, bchG, and bchH genes is regulated in response to oxygen. In Rhodopseudomonas capsulata, the biosyn- by whole-cell suspensions of Rhodopseudo- thesis of protoheme and bacteriochlorophyll fol- monas spheroides. This conversion only oc- lows a common pathway from the condensation curred when the cells were grown under low of succinyl coenzyme A with glycine to the oxygen tension. However, further work was formation of protoporphyrin IX. Biosynthesis of hampered by the inability of cell extracts to protoheme and bacteriochlorophyll proceeds catalyze the chelation of magnesium. -
Finding the Final Pieces of the Vitamin B12 Biosynthetic Jigsaw
COMMENTARY Finding the final pieces of the vitamin B12 biosynthetic jigsaw Martin J. Warren* Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom ver since Dorothy Hodgkin gate anaerobe Eubacterium limosum min B12 deficiency in the photosynthetic solved the structure of vitamin (13). Here, labeling revealed that the bacterium Rhodobacter capsulatus (18). B12 some 50 years ago, research- DMB framework was synthesized anaer- Campbell et al. (1) demonstrate that ers have been puzzling over how obically from erythrose, glycine, for- their S. meliloti bluB mutant strain is Ethis amazing molecular jigsaw is pieced mate, glutamine, and methionine. also a B12 auxotroph but, more specifi- together. In essence, vitamin B12 is However, as with the synthesis of the cally, that it is deficient in the biosyn- a modified tetrapyrrole (corrinoid ring) corrin ring, it also was noted that some thesis of DMB. There appears to be to which is attached either an upper ad- organisms synthesized DMB aerobically a certain amount of serendipity in the enosyl or methyl group and a lower and required molecular oxygen to allow isolation of their bluB strain, because base, usually dimethylbenzimidazole its synthesis (14). In the aerobic path- there is no obvious connection between (DMB) (Fig. 1). Although significant way, it was shown that riboflavin is a requirement for B12 and the produc- success has been achieved toward an transformed into DMB through FMN tion of succinyloglycan. The blu prefix understanding of the construction of the (15) (Fig. 1). This amazing transforma- refers to the fact that the blu genes are corrin ring component of the coenzyme, tion, for which no precedent exists in required to make an aerobic culture of there has been a paucity of information chemistry, sees the C-2 carbon of DMB R. -
Spatial and Temporal Variability in the Response of Phytoplankton and Bacterioplankton to B-Vitamin Amendments in an Upwelling S
1 Spatial and temporal variability in the response of 2 phytoplankton and bacterioplankton to B-vitamin 3 amendments in an upwelling system 4 Vanessa Joglar1*, Antero Prieto1, Esther Barber-Lluch1, Marta Hernández-Ruíz1, Emilio 5 Fernández1 and Eva Teira1 6 1 Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Departamento Ecoloxía e 7 Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain 8 *Correspondence to: Vanessa Joglar +34 986 818790 ([email protected]) 9 1 10 Abstract. We experimentally evaluated the temporal (inter-day and inter-season) and 11 spatial variability in microbial plankton responses to vitamin B12 and/or B1 supply 12 (solely or in combination with inorganic nutrients) in coastal and oceanic waters of the 13 northeast Atlantic Ocean. Phytoplankton and, to a lesser extent, prokaryotes were strongly 14 limited by inorganic nutrients. Inter-day variability in microbial plankton responses to B- 15 vitamins was limited compared to inter-season variability, suggesting that B-vitamins 16 availability might be partially controlled by factors operating at seasonal scale. 17 Chlorophyll-a (Chl-a) concentration and prokaryote biomass (PB) significantly increased 18 after B-vitamin amendments in 13 % and 21 %, respectively, of the 216 cases (36 19 experiments × 6 treatments). Most of these positive responses were produced by 20 treatments containing either B12 solely or B12 combined with B1 in oceanic waters, 21 which was consistent with the significantly lower average vitamin B12 ambient 22 concentrations compared to that in the coastal station. Negative responses, implying a 23 decrease in Chl-a or PB, represented 21 % for phytoplankton and 26 % for prokaryotes. -
Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.