Bacteriochlorophyll Biosynthesis in Rhodopseudomonas Capsulata in Response to Oxygen

Total Page:16

File Type:pdf, Size:1020Kb

Bacteriochlorophyll Biosynthesis in Rhodopseudomonas Capsulata in Response to Oxygen JOURNAL OF BACTERIOLOGY, Nov. 1983, p. 686-694 Vol. 156, No. 2 0021-9193/83/110686-09$02.00/0 Copyright © 1983, American Society for Microbiology Transcriptional Regulation of Several Genes for Bacteriochlorophyll Biosynthesis in Rhodopseudomonas capsulata in Response to Oxygen ALAN J. BIELt AND BARRY L. MARRSt* E. A. Doisy Department ofBiochemistry, Saint Louis University School of Medicine, St. Louis, Missouri 63104 Received 27 June 1983/Accepted 23 August 1983 Although it has been shown that bacteriochlorophyll synthesis in Rhodopseudo- monas capsulata is repressed by oxygen and high light intensity, few details of regulation by these environmental factors are known, primarily owing to a lack of assays for the biosynthetic enzymes. We have examined regulation at the transcriptional level by isolating and studying fusions between the Mu dl(Apr lac) phage and various bch genes. In these strains, the lacZ gene of the phage is under the control of bch gene promoters. We have found that atmospheric oxygen tension (20% 02) reduces the expression of these fusions at least twofold compared with low oxygen tension (2% 02). Therefore, transcription of the bchA, bchB, bchC, bchG, and bchH genes is regulated in response to oxygen. In Rhodopseudomonas capsulata, the biosyn- by whole-cell suspensions of Rhodopseudo- thesis of protoheme and bacteriochlorophyll fol- monas spheroides. This conversion only oc- lows a common pathway from the condensation curred when the cells were grown under low of succinyl coenzyme A with glycine to the oxygen tension. However, further work was formation of protoporphyrin IX. Biosynthesis of hampered by the inability of cell extracts to protoheme and bacteriochlorophyll proceeds catalyze the chelation of magnesium. from protoporphyrin IX by the chelation of iron To elucidate the mechanism by which bacte- and magnesium, respectively. The pathway riochlorophyll synthesis is regulated in response from magnesium chelation to formation of bacte- to oxygen, it is necessary to be able to measure riochlorophyll is depicted in Fig. 1. The work of the activity of each of the genes coding for Cohen-Bazire et al. (6) was instrumental in dem- bacteriochlorophyll biosynthetic enzymes. Be- onstrating that oxygen represses bacteriochloro- cause of the lack of assays for these enzymes, phyll synthesis in purple nonsulfur photosyn- we have used an alternative method for measur- thetic bacteria. However, study of the details of ing the transcription of the biosynthetic genes. regulation by oxygen has proven difficult. One This report details the use of the Mu dl(Apr lac) of the main reasons for this is the lack of assays phage developed by Casadaban and Cohen (5) to for most of the enzymes involved in the conver- create fusions between the lacZ (f3-galacto- sion of protoporphyrin IX to bacteriochloro- sidase) gene and various bch genes. By placing phyll. One enzyme of the common pathway that the lacZ gene under the control of various bch has been studied in some detail is 8-aminolevu- gene promoters, the activity of these promoters linate synthase. This enzyme appears to be under different culture conditions can be deter- repressed in highly aerated cultures (10). The mined by measuring the amount of P-galacto- only other enzyme whose activity can be direct- sidase formed. Using these fusions, the regula- ly determined is magnesium protoporphyrin tion of many of the bch gene promoters in methyl transferase. Synthesis of this enzyme response to oxygen and light has been deter- also appears to be repressed by oxygen (10). mined. We have found that growth in a low- Gorchein (7, 8) was able to demonstrate the oxygen environment increased the expression conversion of exogenous protoporphyrin IX to from the bch gene promoters two- to fourfold. magnesium protoporphyrin monomethyl ester MATERIALS AND METHODS t Present address: Department of Biology, Tulane Universi- Bacterial strains and plasmids. Bacterial strains used ty, New Orleans, LA 70118. in this work are described in Table 1. pRPS404 is a t Present address: Corporate Research Science Labora- derivative of RP1 containing all of the known bch and tories, Exxon Research and Engineering Co., Annandale, NJ crt genes. The plasmid carries a gene for kanamycin 08801. resistance and the crtD223 allele. The genes for ampi- 686 VOL. 156, 1983 REGULATION OF R. CAPSULATA bch GENES BY OXYGEN 687 Mg2+, SAM Mg-2,4-divinyl Protoporphyrin IX - * - Mg Protoporphyrdn - pheoporphyrdn as 2+ monomethyl ester bchE monomethyl ester + Fe bchD, bchH (P590) (P631) Protohem bchB + 2H bchF 2-Desecetyl.2-vinyl bchA + H 0 bacteriochlorophyllide a*> +2H +2H ' eP730) Chlorophyllide a *- - Mg2vnyl,4-ethyl 2.Descetyl-2-hydroxyethyl + H20 (P665) pheoporphyrin a,, bactertochlorophyllde a b20/ monomethyl ester (P720) ' +2H bchF N 2-Devinyl,2-hydroxyethyl -2H bchC bchA chlorophyllide a (P662) + phytolp Bacterlochlorophylllde a Becteriochlorophyll (P770) bchG FIG. 1. Bacteriochlorophyll biosynthetic pathway (after references 15 and 16). The order of reactions has been inferred from consideration of the structures of accumulated intermediates. The red-most spectral peaks of the intermediates are indicated in parentheses. Genes have been positioned along the pathway on the basis of the bacteriochlorophyll intermediates accumulated in strains with lesions in those genes, but unambiguous assignments await further enzymological and genetic studies. SAM, S-Adenosylmethionine. cillin and tetracycline resistance have been inactivated extracted with acetone-methanol (7:2) as described by amber mutations (11, 13). previously by Cohen-Bazire et al. (6). The rest of the Media. R. capsulata was routinely grown either in a culture was harvested and suspended in 4 ml of Z- malate-minimal salts medium (RCV) (19) or in 0.3% buffer (12). The cells, at 0°C, were disrupted by two Difco Bacto-Peptone-0.3% Difco yeast extract (PYE). 20-s bursts of sonication in a model 140 Branson Escherichia coli was grown in minimal salts medium Sonifier. The suspension was centrifuged for 20 min at Al (12) modified by the omission of sodium citrate and 27,000 x g. Absorbances of the acetone-methanol thiamine. The carbon source included in this medium extract, the sonic extract, and the culture fluid were was either 0.2% glucose or 0.2% sorbitol. L-broth (2) recorded from 300 to 900 nm with a Beckman DU7 modified by omitting glucose and decreasing the sodi- spectrophotometer and compared with spectra ob- um chloride to 0.5% was used as a rich medium. tained from strains carrying known bch lesions. Antibiotics, when used, were added to yield the fol- Identification of porphyrins accumulated by bchD, lowing final concentrations (,ug/ml): ampicillin, 25; bchE, and bchH strains. Strains containing mutations kanamycin, 10; streptomycin, 75; rifampin, 75. When in bchD, bchE, and bchH were grown in 200 ml of solid media were employed, 1.5% agar (Difco) was RCV+ for 2 to 3 days without shaking and extracted added to the above media. Soft agar overlays con- with 10 ml of acetone-methanol as described above. tained 0.7% agar. 5-Bromo-4-chloro-3-indoyl-,-D-ga- The emission spectra of these extracts, along with lactopyranoside (X-gal), used to determine the pres- protoporphyrin IX, magnesium protoporphyrin IX, ence of P-galactosidase activity in colonies, was in- and protoporphyrin monomethyl ester standards (Por- cluded in agar-containing media at a concentration of phyrin Products), were recorded by a Perkin-Elmer 40 ,ug/ml. Oxygen tensions, where indicated, were 512 fluorescence spectrophotometer with the excita- measured polarimetrically in the liquid phase of each tion wavelength set at 402 nm. The extracted porphy- culture with a Clark-type oxygen electrode (YSI model rins and standards were also characterized by chroma- 53). tography on Silica Gel G TLC plates (Fisher). The Mating procedures. Matings between E. coli donors plates were developed in benzene-ethyl acetate-etha- and R. capsulata recipients were as described previ- nol (4:1:1) and viewed under long-wave UV light while ously by Marrs (11). Matings between E. coli donors still wet. and recipients were accomplished by the liquid mating Determination of j-galactosidase activity in bch::Mu technique of Barth (1). d insertion strains. Overnight PYE broth cultures of Induction of Mu dl(Apr lac) phage. Mu dl(Apr lac) the strains to be assayed were used to inoculate 10 ml lysates were obtained by thermal induction of strain of PYE in culture tubes (16 by 150 mm) to a Klett (red MAL103 as described previously by Casadaban and filter) value of 25. The tubes were fitted with rubber Cohen (5). septa, each containing a glass tube as a gas inlet and a Identification of precursors accumulated by Mu d syringe needle as a gas outlet. The cultures were insertion strains. Mu d insertion strains were grown for incubated with appropriate lighting and sparged with 2 to 3 days at 30°C in the dark without shaking in 30 ml different gases as described below. The incubation was of RCV containing 0.6% glucose, 0.5% pyruvate, and stopped when the cultures reached a density of ca. 100 0.5 M dimethyl sulfoxide (RCV+) to obtain low oxy- Klett units, and the dissolved oxygen concentration of gen tensions. Cultures were grown under high oxygen each culture was determined with a YSI model 53 tension by inoculating 30 ml of RCV+ in a 1-liter flask dissolved oxygen monitor. Eight milliliters of culture with the appropriate strain and incubating it for 1 day were harvested by centrifugation at 27,000 x g for 10 with vigorous
Recommended publications
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V.
    [Show full text]
  • Biofilm Forming Purple Sulfur Bacteria Enrichment from Trunk River
    Different biofilm-forming purple sulfur bacteria enriched from Trunk River Xiaolei Liu Abstract Three different types of biofilm were developed on the bottles of purple sulfur bacteria enrichments. The original inoculum is a piece of sea grass covered with purple biofilm that collected from Trunk River during the course. Microscopy imaging showed that two of the three biofilms were apparently composed of two major species. MonoFISH probing supports the recognition of purple sulfur bacteria as Chromatium in the class of gammaproteobacteria which grow together with a deltaproteobacteria species. Such a combination of Chromatium colonize with deltaproteobacteria species is also originally present in the purple biofilm on sea grass. Further work is needed to investigate the potential interactions between these two species. Introduction Purple sulfur bacteria are photosynthetic anearobes in the phylum of Proteobacteria (Fowler et al., 1984), which is capable of fixing carbon dioxide with sulfide other than water as the electron donors. Since oxygen is not produced during their photosynthesis these purple sulfur bacteria are also known as anoxygenic photoautotrophs. Most purple sulfur bacteria synthesize bacteriochlorophyll and carotenoids as their light-harvesting pigment complex (Iba et al., 1988). Because their photosynthesis reQuires anoxic condition and sulfide, these purple sulfur bacteria are often found in organic rich aquatic environments where sulfate reducing heterotrophic bacteria thrive. Both planktonic and benthic species of purple sulfur bacteria exist in different sulfidic environments. In the habitat of stratified meromictic lakes with external sulfate input, such as Green Lake, Mahoney Lake and Lake Cadagno, the phototrophic chemocline microbial communities are often dominated by planktonic purple sulfur bacteria living on sulfide diffused up from organic rich sediment (e.g.
    [Show full text]
  • Structure of the Biliverdin Radical Intermediate in Phycocyanobilin
    Published on Web 01/21/2009 Structure of the Biliverdin Radical Intermediate in Phycocyanobilin:Ferredoxin Oxidoreductase Identified by High-Field EPR and DFT Stefan Stoll,*,† Alexander Gunn,† Marcin Brynda,†,| Wesley Sughrue,†,‡ Amanda C. Kohler,‡,⊥ Andrew Ozarowski,§ Andrew J. Fisher,†,‡ J. Clark Lagarias,‡ and R. David Britt*,† Department of Chemistry and Section of Molecular and Cellular Biology, UniVersity of California DaVis, 1 Shields AVenue, DaVis, California 95616, and National High Magnetic Field Laboratory, Florida State UniVersity, 1800 East Paul Dirac DriVe, Tallahassee, Florida 32310 Received October 31, 2008; E-mail: [email protected] (S.S.); [email protected] (R.D.B.) The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two- step four-electron reduction of biliverdin IXR to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrroleringsareprotonated.Thisexperimentallconfirmsthereactionmechanismrecentlyproposed(Tu, et al.
    [Show full text]
  • Finding the Final Pieces of the Vitamin B12 Biosynthetic Jigsaw
    COMMENTARY Finding the final pieces of the vitamin B12 biosynthetic jigsaw Martin J. Warren* Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom ver since Dorothy Hodgkin gate anaerobe Eubacterium limosum min B12 deficiency in the photosynthetic solved the structure of vitamin (13). Here, labeling revealed that the bacterium Rhodobacter capsulatus (18). B12 some 50 years ago, research- DMB framework was synthesized anaer- Campbell et al. (1) demonstrate that ers have been puzzling over how obically from erythrose, glycine, for- their S. meliloti bluB mutant strain is Ethis amazing molecular jigsaw is pieced mate, glutamine, and methionine. also a B12 auxotroph but, more specifi- together. In essence, vitamin B12 is However, as with the synthesis of the cally, that it is deficient in the biosyn- a modified tetrapyrrole (corrinoid ring) corrin ring, it also was noted that some thesis of DMB. There appears to be to which is attached either an upper ad- organisms synthesized DMB aerobically a certain amount of serendipity in the enosyl or methyl group and a lower and required molecular oxygen to allow isolation of their bluB strain, because base, usually dimethylbenzimidazole its synthesis (14). In the aerobic path- there is no obvious connection between (DMB) (Fig. 1). Although significant way, it was shown that riboflavin is a requirement for B12 and the produc- success has been achieved toward an transformed into DMB through FMN tion of succinyloglycan. The blu prefix understanding of the construction of the (15) (Fig. 1). This amazing transforma- refers to the fact that the blu genes are corrin ring component of the coenzyme, tion, for which no precedent exists in required to make an aerobic culture of there has been a paucity of information chemistry, sees the C-2 carbon of DMB R.
    [Show full text]
  • Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
    water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.
    [Show full text]
  • Purification and Characterization of Rhodobacter Sphaeroides Polyhistidine-Tagged Hema and Comparison with Purified Polyhistidine- Tagged Hemt
    PURIFICATION AND CHARACTERIZATION OF RHODOBACTER SPHAEROIDES POLYHISTIDINE-TAGGED HEMA AND COMPARISON WITH PURIFIED POLYHISTIDINE- TAGGED HEMT Xiao Xiao A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2013 Committee: Dr. Jill Zeilstra-Ryalls, Ph.D., Advisor Dr. Rogers O. Scott Dr. Zhaohui Xu ii © 2013 Xiao Xiao All Rights Reserved iii ABSTRACT Jill Zeilstra-Ryalls, Ph.D, Advisor All tetrapyrrole, molecules that include heme, bacteriochlorophyll, and vitamin B12, are derived from 5-aminolevulinic acid (ALA). In the purple non-sulfur alphaproteobacteria Rhodobacter sphaeroides ALA is formed by the condensation of glycine and succinyl-CoA, catalyzed by the pyridoxal-phosphate dependent enzyme ALA synthase. Two ALA synthase genes, hemA and hemT are present in R. sphaeroides wild type strain 2.4.1. When expressed, either one of the gene products can satisfy the ALA requirement of the cell. Towards understanding the presence of two ALA synthases in one organism, each enzyme should be characterized individually in order to define what is similar and different about the enzymes. Using this information, one may be able to infer how the activities of the two ALA synthases are coordinate in R. sphaeroides. In this study, R. sphaeroides 2.4.1 recombinant polyhistidine- tagged HemA (rHemA) was affinity purified and its optimum temperature and pH, specific activity, and kinetic properties were determined. The effect of added hemin on its activity was also evaluated, as was its secondary structure composition using circular dichroism. These characteristics were then compared to those of recombinant polyhistidine-tagged HemT (rHemT).
    [Show full text]
  • Hemin and Chlorophyll— the Two Most Important Pigments for Life on Earth1
    THE OHIO JOURNAL OF SCIENCE VOL. LVI JULY, 1956 No. 4 HEMIN AND CHLOROPHYLL— THE TWO MOST IMPORTANT PIGMENTS FOR LIFE ON EARTH1 PAUL ROTHEMUND The Ohio State University, Columbus, 10, and Muskingum College, New Concord, Ohio Two chemical processes are the prerequisites for all life on earth: the absorption of some of the energy from the sun in the green plants and its transformation into carbon compounds on one hand, and the use of the chemical energy of these compounds by animals in controlled decomposition reactions on the other. From the chemist's point of view the green leaf is a veritable chemical labora- tory: carbon dioxide from the air, and water and inorganic salts from the soil are the raw material, the visible portion of the sun radiation furnishes the energy, and the numerous complex constituents of the plant represent the manufactured products. Some of the substances synthesized are structural matter, like cellulose in the wood, or cork in the bark, others are food reserves, as starch in the grains of corn or wheat, or in potatoes. Of the many other materials produced in the green plant only a few may be enumerated here, sugars, fats, oils and waxes, proteins and nucleic acids, fibers like cotton or hemp, vitamins, hormones, indigo and other dyes, latex for producing rubber, alkaloids like the nicotin in tobacco leaves, valuable medicinally used compounds, such as quinine, cocaine, and morphine, and—most important—the green pigment chlorophyll. "Photo- synthesis", or the "assimilation of carbon dioxide" is the biochemical process, in which simply constructed and relatively inert inorganic compounds are built up into the highly complex, reactive and sensitive organic compounds, which characterize living matter.
    [Show full text]
  • And Formation
    J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from Review article Journal of Medical Genetics, 1980, 17, 1-14 Haems and chlorophylls: comparison of function and formation G A F HENDRY AND 0 T G JONES From the Department ofBiochemistry, The Medical School, University ofBristol, Bristol BS8 ITD In 1844 Verdeill reported that acid treatment of at the same time by McMunn3 of cytochromes, chlorophyll or haem yielded apparently similar red another group of haem proteins. compounds; he even postulated that chlorophylls It was the demonstration by Nencki and co- would contain iron. Hoppe-Seyler2 confirmed the workers 45 that the degradation of both chlorophylls apparent similarity of acid derivatives of haems and and haems yielded monopyrroles that led them, in chlorophylls from their light absorption charac- true neo-Darwinian fashion, to postulate a common teristics, a point rather overshadowing the discovery origin for animals and plants. 0 0-'I CH2 II copyright. CH CH3 COOH CIH2 CH2 C-O CH2 http://jmg.bmj.com/ NH2 ( CH3' 'CH3 ® 5- Aminolaevulinic acid a CH2 2 1 12 2 CH2 )H COOH CD FIG 1 Structures ofprotohaem and Protoporphyrin IX chlorophyll a and two of their precursors, acid and 5-aminolaevulinic on September 30, 2021 by guest. Protected protoporphyrin IX (with substituent numbering positions). CH2 CH CH.--,j CH2 CH2 COOCH3 Protohoem (haem- b) CooC20H39 Chlorophyll a 1 J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from 2 G A F Hendry and 0 T G Jones Following the work ofWillstatter6 and Fischer and particularly those of avian egg shells, have no Stern,7 the structure of most natural and many central complexed metal.
    [Show full text]
  • ROBERT HUBER Max-Planck-Institut Für Biochemie, 8033 Martinsried
    A STRUCTURAL BASIS OF LIGHT ENERGY AND ELECTRON TRANSFER IN BIOLOGY Nobel Lecture, December 8, 1988 by ROBERT HUBER Max-Planck-Institut für Biochemie, 8033 Martinsried Dedicated to Christa ABBREVIATIONS PBS, phycobilisomes; light harvesting organelles peripheral to the thylakoid membrane in cyanobacteria, which carry out oxygenic photosynthesis and have photosystems I and II; PE, PEC, PC, APC, phycoerythrin, phycoerythrocyanin, phycocyanin, allo- phycocyanin; biliprotein components in PBS with covalently attached tetra- pyrrole (bilin) pigments; PS I, II; photosynthetic reaction centers in chloroplasts and cyanobacteria; EBP; retinol binding protein; BBP, bilin (biliverdin IX); binding protein in Pieris brassicae; A Rps. viridis, bacteriochlorophyll-b containing purple bacterium carrying out anoxygenic photosynthesis; RC, reaction centre; C, H, L, M; the four subunits of the reaction centre from Rps. viridis: the cytochrome c subunit (C), with 4 haems displaying two redox potentials is located on the periplasmic side of the membrane; the L- and M- subunits are integrated in the membrane and their polypeptide chains span the membrane with 5 each, labelled A, B, C, D, E; they bind the bacteriochlorophyll-b (BChl-b or BC), bacteriopheophytin-b (BPh-b or BP), 2+ menaquinone-9 (Q A), ubiquinone-9 (UQ,Q B) and Fe cofactors; the sub- scripts P, A, M, L indicate pair, accessory, M-, L-subunit association, respec- tively; the H-subunit is located on the cytoplasmic side and its N-terminal α− helical segment (H) spans the membrane; P680, P960; primary electron donors in PS II and the RC of Rps. viridis, respectively, indicating the long wavelength absorption maxima; electronically excited states of P and D A; LHC, light harvesting complexes; light harvesting protein pigment complexes in BChl-a,b containing bacteria; R.
    [Show full text]
  • In Situ Formation of Photoactive B-Ring Reduced Chlorophyll Isomer In
    www.nature.com/scientificreports OPEN In situ formation of photoactive B‑ring reduced chlorophyll isomer in photosynthetic protein LH2 Yoshitaka Saga1*, Yuji Otsuka1, Daichi Funakoshi2, Yuto Masaoka2, Yu Kihara2, Tsubasa Hidaka2, Hiroka Hatano3, Hitoshi Asakawa3,4, Yutaka Nagasawa2 & Hitoshi Tamiaki2 Natural chlorophylls have a D‑ring reduced chlorin π‑system; however, no naturally occurring photosynthetically active B‑ring reduced chlorins have been reported. Here we report a B‑ring reduced chlorin, 17,18‑didehydro‑bacteriochlorophyll (BChl) a, produced by in situ oxidation of B800 bacteriochlorophyll (BChl) a in a light‑harvesting protein LH2 from a purple photosynthetic bacterium Phaeospirillum molischianum. The regioselective oxidation of the B‑ring of B800 BChl a is rationalized by its molecular orientation in the protein matrix. The formation of 17,18‑didehydro‑BChl a produced no change in the local structures and circular arrangement of the LH2 protein. The B‑ring reduced 17,18‑didehydro‑BChl a functions as an energy donor in the LH2 protein. The photoactive B‑ring reduced Chl isomer in LH2 will be helpful for understanding the photofunction and evolution of photosynthetic cyclic tetrapyrrole pigments. Cyclic tetrapyrroles with modifed skeletons and peripheral groups have essential roles in various biofunctional proteins1–3. Chlorophyll (Chl) molecules, involved in the solar-energy conversion processes of oxygenic photo- synthesis, typically contain an unsymmetrical conjugated tetrapyrrole π-system, in which the C17–C18 bond in the D-ring is hydrogenated 1,4–8. Te D-ring reduced chlorin (17,18-dihydroporphyrin) skeleton is responsible for efcient light absorption in the visible portion of the solar spectrum.
    [Show full text]
  • Discovery of Zinc-Bacteriochlorophyll in Rhodobacter Sphaeroides Paul R
    Discovery of zinc-bacteriochlorophyll in Rhodobacter sphaeroides Paul R. Jaschke and J.Thomas Beatty Department of Microbiology and Immunology, University of British Columbia Introduction Results Conclusions At the heart of photosynthesis are the chlorophyll pigments This work shows that in a cell previously thought to be devoid of any responsible for absorption and transmission of light energy. How the of any photosynthetic pigments (3), there are small quantities of Zn- How the cell synthesizes and distributes these pigments to the Zn-BChl that assemble into the RC complex. Although never seen photosynthetic apparatus (Fig 1) of Rhodobacter sphaeroides (Fig 2) 1. BChl is absent in bchD mutant but a pigment 2. Identification of Zn-BChl. seen before in R. sphaeroides, such a Zn-BChl pigment was initially 2) is the focus of this study. with similar spectral properties is present. To further characterize this pigment we used MALDI-TOF mass spectrometry initially discovered in Acidiphilium rubrum where it is used as a spectrometry on the isolated sample. The major molecular ion peak (M+) was photosynthetic pigment in the RC (6, 8). We have yet to assess Outer Membrane To determine whether the bchD mutant made any photosynthetic pigments, cell functionality of R. sphaeroides’ Zn-BChl RC but it is presumed that Figure 1. pigments, cell extractions were ran on HPLC (Fig 5A). BChl was conspicuously (M+) was 950.6 m/z, which agrees well with the predicted mass of Zn-BChl Cytochrome c2 + - hv BChl (M+=950.4), but not with any other metal BChl derivative (Fig 6A). that without BPhe there will be incomplete electron flow and no H e Photosynthetic energy conspicuously absent from these cells, but a major peak not seen in wild type Periplasm Upon treatment with acid, which is known to demetallate BChl, another peak at no reduction of the quinones, rendering this RC non-functional.
    [Show full text]