Honey Bees and Beekeeping
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Honey Bee Immunity — Pesticides — Pests and Diseases
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2017 A GUIDEBOOK ON HONEY BEE HEALTH: Honey Bee Immunity — Pesticides — Pests and Diseases Joey Caputo Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Photo by David Cappaert, Bugwood.org 1 A GUIDEBOOK ON HONEY BEE HEALTH Honey Bee Immunity — Pesticides— Pests and Diseases By Joey Caputo A graduate degree project submitted as partial fulfillment of the Option III requirements for the de- gree of Masters of Science in Entomology at the graduate school of the University of Nebraska- Lincoln, 2017. Last updated April 2017 — Version 1.2 i Contents Introduction 1 Honey Bee Immune System 2 Mechanical and Biochemical Immunity 2 Innate and Cell-Mediated Immunity 2 Humoral Immunity 2 Social Immunity 3 Detoxification Complexes 5 Problems in Beekeeping 5 Colony Collapse Disorder (CCD) 5 Bacterial, Fungal and Microsporidian Diseases 6 American foulbrood 6 European foulbrood 7 Nosemosis 8 Chalkbrood 10 Crithidia 10 Stonebrood 11 Varroa Mite and Viruses 11 Varroa Biology and Life Cycle 12 Varroa Mite Damage and Parasitic Mite -
Minimizing Honey Bee Exposure to Pesticides1 J
ENY-162 Minimizing Honey Bee Exposure to Pesticides1 J. D. Ellis, J. Klopchin, E. Buss, L. Diepenbrock, F. M. Fishel, W. H. Kern, C. Mannion, E. McAvoy, L. S. Osborne, M. Rogers, M. Sanford, H. Smith, B. S. Stanford, P. Stansly, L. Stelinski, S. Webb, and A. Vu2 Introduction state, and international partners to identify ways to reduce pesticide exposure to beneficial pollinators, while including Growers and pesticide applicators have a number of options appropriate label restrictions to safeguard pollinators, the when faced with a pest problem: do nothing, or apply environment, and humans. More information can be found some type of cultural, chemical, biological, or physical here: epa.gov/pollinator-protection. The bottom line is that method to mitigate the damage. The action to be taken the label is the law—it must be followed. should be chosen after weighing the risks and benefits of all available options. There are many situations where pest control is necessary and chemical controls must be Pollinator Importance used. Certain chemistries of insecticides, fungicides, and The western honey bee (Apis mellifera, Figure 1) is conceiv- herbicides are known to have negative and long-term ably the most important pollinator in Florida and American impacts on bees, other pollinators, and other beneficial agricultural landscapes (Calderone 2012). Over 50 major arthropods. Fortunately, there are pesticides that have crops in the United States and at least 13 in Florida either minimal impacts on pollinators and beneficial organisms. depend on honey bees for pollination or produce more The pollinator-protection language that is required to be yield when honey bees are plentiful (Delaplane and on US pesticide labels outlines how best to minimize these Mayer 2000). -
Save the Bees Save the Bees
Unit for week 5 save the bees Save the bees Stresses on the Honey bee Several factors may create stress in the hive, which can cause a decrease in population. Below are some of those possible contributors. All of these effects on the colony can be observed, some more easily than others, in the Observation Hive. VARROA MITES: The Varroa mite is a parasitic, invasive species that was introduced to the United States in the 1980’s . It BEYOND THE originated in Asia and the western honey bee has no resistance. The mated adult female Varroa mites enter the brood cells right before HIVE the bees cap the pupae and feed on the growing bee. The bee will hatch with deformities such as misshapen wings that result in an inability to fly. SMALL HIVE BEETLES: Hive beetles are pests to honey bees. Ask the Audience They entered the United States in the late 90’s. Most strong hives will not be severely affected by the beetle; however, if the hive • Do you know what it feels like beetle becomes too overbearing, the colony will desert the hive. The to be stressed? beetle tunnels in the comb and creates destruction in the storage of honey and pollen. Ways to identify a beetle problem is a smell of • Do you have any pests in your fermented honey, a slimy covering of the comb, and the presence life? of beetle maggots. • Do you have a vegetable DISEASE: although bees keep their hive very clean and try to garden or any flowers in your maintain sanitation as best as possible, there are many pathogens, yard? disease causing microorganisms, which can infect the bees. -
The Buzz About Bees: Honey Bee Biology and Behavior
4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M. -
Colony Growth and Seasonal Management of Honey Bees
Colony Growth and Seasonal Management of Honey Bees Management of honey bees varies based on whether Although honey is essential food for bees, colonies pollination or honey production is the primary objective. cannot grow without sufficient amounts of incoming A simple scheme for those interested in maximizing honey pollen. Pollen contains the essential amino acids, sterols, production can be a template for any beginning beekeeper. minerals, and vitamins that bee larvae need to grow into Managing honey bees involves seasonal manipulations adult honey bees. Bee colonies cannot grow without brood of hive space to provide room when necessary for the production, and brood production hinges on good-quality expanding brood-rearing area and for storage of surplus nutrition that comes from pollen. Hence, bee colonies grow honey. Good management includes reducing colony space largest during or just after periods of maximum numbers during periods of dearth of incoming food, preventing of blooming plants in the spring and autumn (Figure 1). swarming of bees, feeding food supplements to offset any These periods are called honey flows. shortcomings in winter stores or to help stimulate brood Blooming of food plants can be predicted by a crude production during critical periods of colony development, geographic rule of adding a 1-week delay in bloom for keeping young and good-quality queens in colonies, and every 200 miles or so northward in latitude. For example, if managing diseases and parasites. sumac is blooming heavily in southern Mississippi during the first week of May, a person living near the Mississippi- Basic Growth Cycle Tennessee border might expect sumac to bloom from the Good seasonal management begins with understand- third week of May into the beginning of June. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
Honey Bees: a Guide for Veterinarians
the veterinarian’s role in honey bee health HONEY BEES: A GUIDE FOR VETERINARIANS 01.01.17 TABLE OF CONTENTS Introduction Honey bees and veterinarians Honey bee basics and terminology Beekeeping equipment and terminology Honey bee hive inspection Signs of honey bee health Honey bee diseases Bacterial diseases American foulbrood (AFB) European foulbrood (EFB) Diseases that look like AFB and EFB Idiopathic Brood Disease (IBD) Parasitic Mite Syndrome (PMS) Viruses Paralytic viruses Sacbrood Microsporidial diseases Nosema Fungal diseases Chalkbrood Parasitic diseases Parasitic Mite Syndrome (PMS) Tracheal mites Small hive beetles Tropilaelaps species Other disease conditions Malnutrition Pesticide toxicity Diploid drone syndrome Overly hygienic hive Drone-laying queen Laying Worker Colony Collapse Disorder Submission of samples for laboratory testing Honeybee Flowchart (used with permission from One Health Veterinary Consulting, Inc.) Additional Resources Acknowledgements © American Veterinary Medical Association 2017. This information has not been approved by the AVMA Board of Directors or the House of Delegates, and it is not to be construed as AVMA policy nor as a definitive statement on the subject, but rather to serve as a resource providing practical information for veterinarians. INTRODUCTION Honey bees weren’t on veterinarians’ radars until the U.S. Food and Drug Administration issued a final Veterinary Feed Directive (VFD) rule, effective January 1, 2017, that classifies honey bees as livestock and places them under the provisions of the VFD. As a result of that rule and changes in the FDA’s policy on medically important antimicrobials, honey bees now fall into the veterinarians’ purview, and veterinarians need to know about their care. -
Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin Hive Consists of Three Types of Bees ◦ Queen, Drone and Worker
Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin Hive consists of three types of bees ◦ Queen, Drone and Worker For Year Color: Ending In: White 1 or 6 Yellow 2 or 7 Red 3 or 8 Green 4 or 9 Blue 5 or 0 Queen Marking Colors Queen Only Fertile female in the Hive Can lay 2000 eggs each day She can live 5 years, 3-years average One per colony usually Mates in flight with 7-150 drones Queen Her thorax is slightly larger No pollen baskets or wax glands Stinger is smoother and curved (and reusable) The Honey Bee Colony Queen Pheromones ◦ The “social glue” of the hive ◦ Gives the colony its identity and temperament ◦ Sends signals to the workers Mates once, in flight, with 7 to 150 drones Lays both fertilized and unfertilized eggs Fertilized eggs become workers or Queens Unfertilized eggs become drones How does an egg become a queen instead of a worker? ◦ Royal Jelly is fed to the larvae for a much longer period of time ◦ Royal Jelly is secreted from the hypopharynx of worker bees Royal Jelly Supercedure Cell (Never cut these unless you have a replacement queen ready) Basic Anatomy Worker ◦ Sterile female ◦ Does the work of the hive ◦ Have specialized body structures Brood food glands – royal jelly Scent glands (pheromones) Wax glands Pollen baskets Barbed stingers – Ouch! The Honey Bee Colony Worker Bees Perform Roles ◦ Nurse ◦ Guard ◦ Forager Castes Worker bees progress through very defined growth stages ◦ When first hatched they become Nurse Bees Clean cells, keeps brood warm, feed larvae Receive -
Honey Bee 99
ECTD_086 (i) TITLE: The world's beekeeping - past and present. SOURCE: Chapter from: The hive and the honey bee, ed. R.A. Grout, Hamilton, IL: Dadant & Sons Chapter 1, pp 01- 10 DATE: 1975 Reproduced with permission of The Hive and the Honey Bee and Dadant & Sons, Inc. Reprinted from (( The Hive and the Honey Bee 99 Edited by Dadant & Sons A DADANT PUBLICATION @ CHAPTER I THE WORLD'S BEEKEEPING — PAST AND PRESENT by EVA CRANE* HE PRESENT BOOK is the direct successor to one written by Lorenzo T Lorraine Langstroth, published in 1853 under the title Langstroth on the Hive and the Honey-bee, which made known Langstroth's practical application of the concept of the bee space in 1851, and laid the founda tion of the whole of our modern beekeeping. In this introductory chapter the story of beekeeping is told briefly, as it leads to and from the climax in 1851, and a short account is given of the position of beekeeping in the world today, which stems largely from Langstroth's work and the book he wrote. BEEKEEPING UP TO 1500 Honey bees now live in all parts of the world except the extreme polar regions, but this was not always so. Until the 16th century they were confined to the Old World, where they had evolved and were widely distributed long before man appeared on the earth. Primitive man learned to get honey by robbing the bees' nests in hollow trees or rock crevices; a painting made in a rock shelter in the mountains of eastern Spain in Mesolithic times, probably about 7000 B.C., survives to show us how this was done (Fig. -
Bee Health: the Role of Pesticides
Bee Health: The Role of Pesticides Renée Johnson Specialist in Agricultural Policy M. Lynne Corn Specialist in Natural Resources Policy February 17, 2015 Congressional Research Service 7-5700 www.crs.gov R43900 Bee Health: The Role of Pesticides Summary Over the past few decades there has been heightened concern about the plight of honey bees as well as other bee species. Given the importance of honey bees and other bee species to food production, many have expressed concern about whether a “pollinator crisis” has been occurring in recent decades. Although honey bee colony losses due to bee pests, parasites, pathogens, and disease are not uncommon, there is the perception that bee health has been declining more rapidly than in prior years, both in the United States and globally. This situation gained increased attention in 2006 as some commercial beekeepers began reporting sharp declines in their honey bee colonies. Because of the severity and unusual circumstances of these colony declines, scientists named this phenomenon colony collapse disorder (CCD). Since then, honey bee colonies have continued to dwindle each year, for reasons not solely attributable to CCD. The U.S. Department of Agriculture (USDA) reports that CCD may not be the only or even the major cause of bee colony losses in recent years. In the United States, USDA estimates of overwinter colony losses from all causes have averaged nearly 30% annually since 2006. The precise reasons for honey bee losses are not yet known. USDA and most scientists working on the subject seem to agree that no research conclusively points to one single cause for the large number of honey bee deaths. -
Preventing Pests and Pathogens in Honey Bee Colonies
BestBest ManagementManagement PracticesPractices toto PreventPrevent thethe SpreadSpread ofof PestsPests andand PathogensPathogens inin HoneybeeHoneybee ColoniesColonies Photos by Rob Snyder (used with permission) Many pest and disease problems in managed honeybee hives can be avoided by practic- ing good sanitation and cultural controls. Prevention is the first and best line of defense against organisms that can harm your colonies. Sanitation Tools should be sterilized with flame and scrubbed with isopropyl alcohol after working in or inspecting a hive. Avoid using other beekeeper’s tools that have not been properly cleaned. Clothing and gloves that are exposed to a hive where disease is suspected needs to be scrubbed and disinfected with 10% bleach solution or disposed. If not using gloves, rinse hands with rubbing alcohol then scrub with soap and water after working in a hive that appears to have been infected with disease. When disease is suspected, practice the previously mentioned steps between working hive to hive in the same beeyard. Cultural Controls When purchasing a bee colony, find out if the seller has been treating with antibiotics for patho- gens. Treated colonies could already be infected with disease, even in the absence of symptoms. Never switch frames from a box that is suspected to have pests and pathogens to a box without such problems. Do not purchase or accept used frames, boxes, or other beekeeping equipment that have not been inspected and certified by your county’s bee inspector. Boxes infected with American Foulbrood should be marked with the letters “AFB” followed by the year to prevent unintentional contamination. Equipment that has been infected with American Foulbrood must be treated or burned and buried. -
Managing Honey Bee Population for Greater Honey Yield Morris Ostrofsky
Managing Honey Bee Population for Greater Honey Yield Morris Ostrofsky There are many reasons why people keep honey bees. When honey production is the goal, there are a number of things a beekeeper can do to increase yield. This article is a summary of different methods that can be used to increase the honey yield from hives. It is based on the premise that increasing population will increase honey production. The techniques and steps described are based on a compilation of my research as well as my own experience in managing populations to increase honey yield. There are two assumptions built into this paper. The first is that the main emphasis is on managing honey bee populations and not on bee keeping basics such as Varroa control. The second is the target audience is beekeepers with some experience. A large and healthy population is an absolute must for optimizing honey yield. Large colonies disproportionally produce more honey than smaller ones. In other words one colony of 60,000 bees will produce more honey than two colonies of 30,000 each combined. This concept is illustrated by Richard Farrar’s graph. As can be seen, the larger the colony population, the greater honey production per bee. My objective is to offer several methods of achieving optimum population for optimum honey yield. 1 Managing Honey Bee Population for Greater Honey Yield Morris Ostrofsky As the name “honey” bee implies, honey bees’ natural tendency to prepare for winter by hoarding honey. So the methods and techniques described in this article are intended to support this natural drive.