Red, Blue and Purple Dyes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Colourants with Ancient Concept and Probable Uses
JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes. -
Honey Bee Immunity — Pesticides — Pests and Diseases
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2017 A GUIDEBOOK ON HONEY BEE HEALTH: Honey Bee Immunity — Pesticides — Pests and Diseases Joey Caputo Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Photo by David Cappaert, Bugwood.org 1 A GUIDEBOOK ON HONEY BEE HEALTH Honey Bee Immunity — Pesticides— Pests and Diseases By Joey Caputo A graduate degree project submitted as partial fulfillment of the Option III requirements for the de- gree of Masters of Science in Entomology at the graduate school of the University of Nebraska- Lincoln, 2017. Last updated April 2017 — Version 1.2 i Contents Introduction 1 Honey Bee Immune System 2 Mechanical and Biochemical Immunity 2 Innate and Cell-Mediated Immunity 2 Humoral Immunity 2 Social Immunity 3 Detoxification Complexes 5 Problems in Beekeeping 5 Colony Collapse Disorder (CCD) 5 Bacterial, Fungal and Microsporidian Diseases 6 American foulbrood 6 European foulbrood 7 Nosemosis 8 Chalkbrood 10 Crithidia 10 Stonebrood 11 Varroa Mite and Viruses 11 Varroa Biology and Life Cycle 12 Varroa Mite Damage and Parasitic Mite -
Indigo Fructose Dye Vat
Kraftkolour Pty Ltd Factory 2, 99 Heyington Ave THOMASTOWN Vic 3074 Tel: 1300 720 493 Web: Kraftkolour.net.au Indigo Fructose Dye Vat The fructose indigo vat was developed by Michel Garcia. The addition of the fructose sugar acts as a reducing agent to the Indigo. The sugar removes one of the oxygen molecules from the indigo making it soluble in water. The addition of the Calcium Hydroxide (slaked or hydrated lime) changes the pH from an acid to a base. The proper pH to get good colour on wool should be about +9 and for cotton and cellulose +10. When the yarn or fabric is dipped into the indigo dye vat, it turns a green colour. When the yarn is raised into the air, the oxygen molecules from the air, bind with the indigo and turn the green into blue. To get darker and more intense blues, the yarn needs to be dipped into the indigo vat and raised into the air to oxidize several times. The colour builds up onto the yarn or cloth in layers. Keep dipping and airing out the yarn until the desired level of colour is achieved. An Indigo vat can be re-used and kept alive for several weeks until all of the indigo has been exhausted. If the Vat still has indigo but has turned blue, reheat the Vat to 50 deg C. Check the pH. Add about a teaspoon of fructose crystals and wait 15-30 minutes. The Vat should turn green. If it is still blue add some Calcium Hydroxide. -
The Maiwa Guide to NATURAL DYES W H at T H Ey a R E a N D H Ow to U S E T H E M
the maiwa guide to NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM WA L NUT NATURA L I ND IG O MADDER TARA SYM PL O C OS SUMA C SE Q UO I A MAR IG O L D SA FFL OWER B U CK THORN LIVI N G B L UE MYRO B A L AN K AMA L A L A C I ND IG O HENNA H I MA L AYAN RHU B AR B G A LL NUT WE L D P OME G RANATE L O G WOOD EASTERN B RA ZIL WOOD C UT C H C HAMOM IL E ( SA PP ANWOOD ) A LK ANET ON I ON S KI NS OSA G E C HESTNUT C O C H I NEA L Q UE B RA C HO EU P ATOR I UM $1.00 603216 NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM Artisans have added colour to cloth for thousands of years. It is only recently (the first artificial dye was invented in 1857) that the textile industry has turned to synthetic dyes. Today, many craftspeople are rediscovering the joy of achieving colour through the use of renewable, non-toxic, natural sources. Natural dyes are inviting and satisfying to use. Most are familiar substances that will spark creative ideas and widen your view of the world. Try experimenting. Colour can be coaxed from many different sources. Once the cloth or fibre is prepared for dyeing it will soak up the colour, yielding a range of results from deep jew- el-like tones to dusky heathers and pastels. -
The Buzz About Bees: Honey Bee Biology and Behavior
4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M. -
Chemical Groups and Botanical Distribution
International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 10, 2016 Review Article REVIEW: FROM SCREENING TO APPLICATION OF MOROCCAN DYEING PLANTS: CHEMICAL GROUPS AND BOTANICAL DISTRIBUTION IMANE ALOUANI, MOHAMMED OULAD BOUYAHYA IDRISSI, MUSTAPHA DRAOUI, MUSTAPHA BOUATIA Laboratory of Analytical Chemestry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat Email: [email protected] Received: 19 May 2016 Revised and Accepted: 12 Aug 2016 ABSTRACT Many dyes are contained in plants and are used for coloring a medium. They are characterized by their content of dyes molecules. They stimulate interest because they are part of a sustainable development approach. There are several chemicals families of plant dye which are contained in more than 450 plants known around the world. In this article, a study based on literature allowed us to realize an inventory of the main dyes plants potentially present in Morocco. A list of 117 plants was established specifying their botanical families, chemical Composition, Colors and parts of the plant used. Keywords: Natural dye, Morocco, Chemical structures, Plant pigments, Extraction © 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ijpps.2016v8i10.12960 INTRODUCTION [5]. They are also biodegradable and compatible with the environment [12]. Several hundred species of plants are used around the world, sometimes for thousands of years for their ability to stain a medium In this article, we process methods of extraction and analysis, or material[1]. -
NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo
NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo •IS THERE ANOTHER NATURAL DYE that holds such deep, almost magical, powers as indigo? One that is called by so many names, such as ai (Japan), landian (China), chàm (Laos and Vietnam), nila (India), gara (Africa), or añil (Central America)? One that beckons the spirits or causes mutinies? In this collection of articles, learn about the natural dye indigo—an overview of its history and science, and places to visit with rich indigo cultural roots. Meet a few artisans who work with indigo and sustain its traditional roots, learn some tips for dyeing and care, and learn more from additional resources. Contents Explore the World of the Natural Dye Indigo and How-To | 3 A Place to Visit: Lao Traditional Culture and Education Center in Vientiane, Laos | 6 Meet Ms. Mai Suxiong, An Artisan of Hmong Batik Indigo Cloth | 8 In Country: Indigo and the El Salvador Story of Grace Guirola | 10 An Ode to Indigo and Dorothy Miller | 12 Natural Fermentation Vat | 14 A Care Tip: Washing Excess Indigo Dye Particles | 15 Contemporary Artisan Cloth and Indigo Projects | 16 Additional Resources | 16 Further Reading | 17 ClothRoads | NATURAL DYEING 101: INDIGO | 2 Explore the World of the Natural Dye Indigo •by Judy Newland OUR JOURNEY through the ancient and mysterious world of the natural dye indigo begins with an overview of this dye deeply embedded in cultures around the world--one that is both art and science and touches the disciplines of botany, chemistry, economics, fashion, medicine, politics, as well as textile and social history. -
Tyrian Purple (6,6'-Dibromoindigo)
Tyrian Purple (6,6’-dibromoindigo) A New Twist on the Dye of Old An Ancient Process The Current Way The base chemical of 6,6’-dibromoindigo dye is Dow Chemical Company was the first company to make found naturally in mollusks and certain other crustaceans. Fabric can be dyed through synthetic indigo dye. 6,6’-dibromoindigo soon followed. Indigo direct dyeing, where the fabric or fiber is dyes (including 6,6’-dibromoindigo) are no longer made in the coated with the paste of the mollusk’s mucus U.S., because it is cheaper to import them from other countries. gland. The pasted fabric is allowed to sit in the Today, indigo dye is produced using laboratory chemical sun so that the purple can develop. Fabric can processes. These processes are highly efficient and cost-effective also be dyed using vat dyeing. In this process, the saliva of the mollusk is combined with for the companies that use them, but there are a growing paste of the mucus gland and allowed to dry. number of environmental concerns that are associated with their This residue is ground into a powder and put manufacture and use, as the dying process creates a large into a warm solution of sodium hydroxide or amount of chemical waste that must be disposed of carefully. At lye, away from sunlight, and fabric this time, both lawmakers and chemists are investigating simpler, is immersed in it. Finally, the dyed fabric is put through a finishing process (for safer, and more efficient ways to get the vividly colored clothing example, an acid wash), and washed with soap and water. -
H'mong Ancient Methods of Indigo Dyeing and Beeswax Batik in Cat
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 H’mong Ancient Methods of Indigo Dyeing and Beeswax Batik in Cat CAT Village, Hoang Lien Commune, SAPA Town, Lao Cai Province, Vietnam Le Thi Hanh Lien1*, Nguyen Thi Hai Yen2, Dao Thi Luu3, Phi Thi Thu Hoang4, Nguyen Thuy Linh5 1, 2, 3, 4 Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Nghia Do, CauGiay District, Ha Noi, Vietnam 5Management Development Institute of Singapore *Corresponding author: lehanhlien2017[at]gmail.com Abstract: Indigo dyeing and beeswax batik are the two traditional crafts that have long been associated with the H’Mong people in Sa Pa in general, Cat Cat village in particular and still preserved until the presentday. Through many stages of making indigo dye combined with sophisticated techniques and the ingenuity, meticulousness of the artisans in each motif and pattern, unique beeswax batik and indigo dyeing products have been created bringing the cultural identity of the H’mong people. These handicraft products have become a highlight to attract tourists to learn and discover local cultural values and they are meaningful souvenirs for visitors after each trip. In recent years, the development of the community-based tourism model in Cat Cat village has brought many benefits to the local community. Meanwhile, it has also contributed to creating opportunities for the development and restoration of H’mong traditional crafts. Keywords: indigo dyeing, beeswax batik, H’Mong, Cat Cat, Sa Pa 1. Introduction cultural and religious life of the H'Mong. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
An Empirical Assessment of the Relationship Of
An International Multidisciplinary Journal, Ethiopia Vol. 7 (2), Serial No. 29, April, 2013:350-370 ISSN 1994-9057 (Print) ISSN 2070--0083 (Online) DOI: http://dx.doi.org/10.4314/afrrev.7i2.22 Adire in South-western Nigeria: Geography of the Centres Areo, Margaret Olugbemisola- Department of Fine and Applied Arts, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Nigeria E-mail; [email protected] & Kalilu, Razaq Olatunde Rom - Department of Fine and Applied Arts, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Nigeria E-mail; [email protected] Abstract Adire, the patterned dyed cloth is extant and is practiced in almost all Yoruba towns in Southwestern Nigeria. The art tradition is however preponderant in a few Yoruba towns to the extent that the names of these towns are traditionally inseparable with the Adire art tradition. With Western education, introduction of foreign religions, influence from other cultures, technique and technology, there is a shift in the producers of Adire, the training pattern, and even an evolution in the production centre. While Western education resulted in a shift from the hitherto traditional Copyright© IAARR 2013: www.afrrevjo.net 350 Indexed African Journals Online: www.ajol.info Vol. 7 (2) Serial No. 29, April, 2013 Pp.350-370 apprenticeship method to the study of the art in schools, unemployment gave birth to the introduction of training drives by government and non governmental parastatals. This study, a field research, is an appraisal of the factors that contributed to the vibrancy of the traditionally renowned centres, and how the newly evolved centres have in contemporary times contributed to the sustainability of the Adire art tradition. -
Roadmap of Solid-State Lithium-Organic Batteries Toward 500 Wh Kg−1 † † Lihong Zhao, Alae Eddine Lakraychi, Zhaoyang Chen, Yanliang Liang, and Yan Yao*
Focus Review http://pubs.acs.org/journal/aelccp Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg−1 † † Lihong Zhao, Alae Eddine Lakraychi, Zhaoyang Chen, Yanliang Liang, and Yan Yao* Cite This: ACS Energy Lett. 2021, 6, 3287−3306 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Over the past few years, solid-state electrolytes (SSEs) have attracted tremendous attention due to their credible promise toward high-energy batteries. In parallel, organic battery electrode materials (OBEMs) are gaining momentum as strong candidates thanks to their lower environmental footprint, flexibility in molecular design and high energy metrics. Integration of the two constitutes a potential synergy to enable energy-dense solid- state batteries (SSBs) with high safety, low cost, and long-term sustainability. In this Review, we present the technological feasibility of combining OBEMs with SSEs along with the possible cell configurations that may result from this peculiar combination. We provide an overview of organic SSBs and discuss their main challenges. We analyze the performance-limiting factors and the critical cell design parameters governing cell-level specific energy and energy density. Lastly, we propose guidelines to achieve 500 Wh kg−1 cell-level specific energy with solid-state Li−organic batteries. Downloaded via Yan Yao on August 25, 2021 at 16:56:41 (UTC). rganic battery electrode materials (OBEMs) have molecules (<2 g cm−3) penalizes the energy density received considerable attention in the past few years. (volumetric) of assembled cells; second, low electronic O With a chemical composition derived from naturally conductivity imposes the use of large amount of conductive abundant elements (C, H, N, O, and S), a real possibility of agents which lower the cell-level specific energy (gravimetric); being generated from renewable resources (biomass), and an See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.