Linda Cayot: Lessons from a Life in Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole Blood Fatty Acid Concentrations in the San Cristóbal Galápagos Tortoise (Chelonoidis Chathamensis)
Whole blood fatty acid concentrations in the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis) Khushboo Dass1, Gregory A. Lewbart1, Juan Pablo Muñoz-Pérez2,3, Maryuri I. Yépez4, Andrea Loyola4, Emile Chen5 and Diego Páez-Rosas3 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America 2 Faculty of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia 3 USFQ & UNC-Chapel Hill Galápagos Science Center (GSC), Universidad San Francisco de Quito, Quito, Ecuador 4 Direcion Parque Nacional Galápagos, Islas Galápagos, Ecuador 5 9 Oneida Court, Chester Springs, PA, United States of America ABSTRACT To continue releasing San Cristóbal Galápagos tortoises housed in managed-care facil- ities at the Giant Tortoise Breeding Center of Galápagos National Park (Galapaguera de Cerro Colorado) to the Otoy Ecological Farm, health assessments and physical examinations were conducted. As a part of these wellness examinations, blood was drawn from 11 tortoises to analyze fatty acid concentrations. Fatty acid levels can provide insight into the nutritional profiles, immune status, and reproductive health of vertebrates. To the co-author's knowledge, there is no current information about fatty acids in this species. It was hypothesized that there would be inherent differences based on the different geographic ranges, diets, sex, and age of turtles. It was noted that the !-6/!-3 ratio was higher for the breeding center than for the ecological farm and that overall polyunsaturated fatty acids (PUFAs) did not have any significant differences. The !-6/!-3 findings can contribute to a global picture of these fatty acids across taxa, as reptiles are underrepresented in this area of research. -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna. -
San Diego History Center Is a Museum, Education Center, and Research Library Founded As the San Diego Historical Society in 1928
The Journal of San Diego Volume 61 Winter 2015 Numbers 1 • The Journal of San Diego History Diego San of Journal 1 • The Numbers 2015 Winter 61 Volume History Publication of The Journal of San Diego History is underwritten by a major grant from the Quest for Truth Foundation, established by the late James G. Scripps. Additional support is provided by “The Journal of San Diego History Fund” of the San Diego Foundation and private donors. The San Diego History Center is a museum, education center, and research library founded as the San Diego Historical Society in 1928. Its activities are supported by: the City of San Diego’s Commission for Arts and Culture; the County of San Diego; individuals; foundations; corporations; fund raising events; membership dues; admissions; shop sales; and rights and reproduction fees. Articles appearing in The Journal of San Diego History are abstracted and indexed in Historical Abstracts and America: History and Life. The paper in the publication meets the minimum requirements of American National Standard for Information Science-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984. Front Cover: Clockwise: Casa de Balboa—headquarters of the San Diego History Center in Balboa Park. Photo by Richard Benton. Back Cover: San Diego & Its Vicinity, 1915 inside advertisement. Courtesy of SDHC Research Archives. Design and Layout: Allen Wynar Printing: Crest Offset Printing Editorial Assistants: Travis Degheri Cynthia van Stralen Joey Seymour The Journal of San Diego History IRIS H. W. ENGSTRAND MOLLY McCLAIN Editors THEODORE STRATHMAN DAVID MILLER Review Editors Published since 1955 by the SAN DIEGO HISTORICAL SOCIETY 1649 El Prado, Balboa Park, San Diego, California 92101 ISSN 0022-4383 The Journal of San Diego History VOLUME 61 WINTER 2015 NUMBER 1 Editorial Consultants Published quarterly by the San Diego History Center at 1649 El Prado, Balboa MATTHEW BOKOVOY Park, San Diego, California 92101. -
Setting the Stage for Understanding Globalization of the Asian Turtle Trade
Setting the Stage for Understanding Globalization of the Asian Turtle Trade: Global, Asian, and American Turtle Diversity, Richness, Endemism, and IUCN Red List Threat Levels Anders G.J. Rhodin and Peter Paul van Dijk IUCN Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Foundation, Conservation International Thursday, January 20, 2011 New Species Described 2010 Photo C. Hagen Graptemys pearlensis - Pearl River Map Turtle Louisiana and Mississippi, USA Red List: Not Evaluated [Endangered] Thursday, January 20, 2011 IUCN/SSC Tortoise and Freshwater Turtle Specialist Group Founded 1980 www.iucn-tftsg.org Thursday, January 20, 2011 International Union for the Conservation of Nature / Species Survival Commission www.iucn.org Thursday, January 20, 2011 Convention on International Trade in Endangered Species of Fauna and Flora www.cites.org Thursday, January 20, 2011 Chelonian Conservation and Biology Thomson Reuters’ ISI Journal Citation Impact Factor currently ranks CCB among the top 100 zoology journals worldwide www.chelonianjournals.org Thursday, January 20, 2011 Conservation Biology of Freshwater Turtles and Tortoises www.iucn-tftsg.org/cbftt Thursday, January 20, 2011 IUCN Tortoise and Freshwater Turtle Specialist Group Members: Work or Focus - 2010 274 Members - 107 Countries Thursday, January 20, 2011 Species, Additional Subspecies, and Total Taxa of Turtles and Tortoises 500 Species Add. Subspecies 375 Total Taxa 250 125 0 1758176617831789179218011812183518441856187318891909193419551961196719771979198619891992199420062007200820092010 Currently Recognized: 334 species, 127 add. subspecies, 461 total taxa Thursday, January 20, 2011 Tortoise and Freshwater Turtle Species Richness Buhlmann, Akre, Iverson, Karapatakis, Mittermeier, Georges, Rhodin, van Dijk, and Gibbons. 2009. Chelonian Conservation and Biology 8:116–149. Thursday, January 20, 2011 Tortoise and Freshwater Turtle Species Richness – Global Rankings 1. -
The Tortuga Gazette and Education Since 1964 Volume 56, Number 2 • March/April 2020
Dedicated to CALIFORNIA TURTLE & TORTOISE CLUB Turtle & Tortoise Conservation, Preservation, the Tortuga Gazette and Education Since 1964 Volume 56, Number 2 • March/April 2020 Pyxis arachnoides arachnoides, the common spider tortoise, photographed in Tsimanampetsotsa National Park on the southwestern coast of Madagascar. Photo © 2018 by Charles J. Sharp Spider Tortoise, Pyxis arachnoides (Bell 1827) The Malagasy Spider Tortoise by M. A. Cohen nhabiting a narrow strip of word pyxi-, meaning a box, and the inches (13 centimeters) in length, Icoastline in southern Mada- species name arachnoides derives while the slightly smaller males av- gascar, the spider tortoise, Pyxis from the Greek root word arachni-, erage 4.5 inches (11 centimeters) arachnoides, is one of only two meaning a spider or a spider web. in length (Smithsonian). species in the genus Pyxis. The The term “Malagasy” is a noun Brown or black in background flat-tailed or flat-shelled tortoise, or an adjective that refers to an coloration, the species' carapace P. planicauda, is the other species inhabitant of the island of Mada- displays yellow or tan, radiating in the genus Pyxis, and it is endem- gascar; it is also the name of the patterning on each vertebral and ic to western Madagascar. Both Austronesian language spoken on pleural scute that resembles a Pyxis species are included on the the island. spider’s web. There is considerable World Atlas’s “The Nine Species variation in the carapacial patterns of Tortoise on the Brink of Ex- Description of the species. It is these web-like tinction,” according to the IUCN Rarely exceeding 6 inches (15 carapacial markings that give the Red List of Threatened Species. -
Chelonian Advisory Group Regional Collection Plan 4Th Edition December 2015
Association of Zoos and Aquariums (AZA) Chelonian Advisory Group Regional Collection Plan 4th Edition December 2015 Editor Chelonian TAG Steering Committee 1 TABLE OF CONTENTS Introduction Mission ...................................................................................................................................... 3 Steering Committee Structure ........................................................................................................... 3 Officers, Steering Committee Members, and Advisors ..................................................................... 4 Taxonomic Scope ............................................................................................................................. 6 Space Analysis Space .......................................................................................................................................... 6 Survey ........................................................................................................................................ 6 Current and Potential Holding Table Results ............................................................................. 8 Species Selection Process Process ..................................................................................................................................... 11 Decision Tree ........................................................................................................................... 13 Decision Tree Results ............................................................................................................. -
Of the Galapagos: HOW SELECTIVE BREEDING IS HELPING BRING EXTINCT GIANT TORTOISES BACK from the DEAD
GHOSTS of the Galapagos: HOW SELECTIVE BREEDING IS HELPING BRING EXTINCT GIANT TORTOISES BACK FROM THE DEAD. WORDS AND PICTURES BY: n January 2020, TUI DE ROY / naturepl.com the Giant Tortoise Restoration Initiative mounted I the most ambitious giant tortoise expedition to date. The mission: to find descendants of the long-extinct Floreana and Pinta tortoises, and breed them to help restore these lost bloodlines to their original Galápagos islands. Given the long lifespans of the reptiles in question, only our kids and grandkids will be there to witness the results. ECHOES OF THE PAST Whalers of old collected giant tortoises for food and left a legacy of feral goats and rats that Within the Galápagos archipelago, further depleted tortoise populations. 15 species of giant tortoise have been recognised, although only 11 survive to this day. Which four species are thought to have FLOREANA TORTOISE suffered extinction? already extinct and two But wait! What nobody (Chelonoidis niger) more were reduced to a realized is that sometime mere handful of survivors, during that great tortoise SANTA FE TORTOISE most notably a single male slaughter of the late Pinta tortoise who became 1800s, amid the whalers’ (Chelonoidis nov sp.) known affectionately as shenanigans around Banks About 200 years ago, delicious fresh meat to Lonesome George. Since Bay at the western foot of something really odd hungry sailors. Thus, tens his discovery in 1971, every Wolf Volcano on Isabela happened in Galápagos. - or possibly hundreds - effort was made worldwide Island (where sperm whales It was the heyday of of thousands of tortoises to find him a mate, and tended to congregate), far-ranging whaling met their ignominious to collect his sperm for some captured tortoises enterprises which saw demise. -
Biographical Sketch and Bibliography of Robert P
BIOGRAPHICAL SKETCH AND BIBLIOGRAPHY OF ROBERT P. REYNOLDS Robert P. Reynolds Biological Survey Unit USGS-Patuxent Wildlife Research Center National Museum of Natural History SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 152 2017 . SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The first number of the SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE series appeared in 1968. SHIS number 1 was a list of herpetological publications arising from within or through the Smithsonian Institution and its collections entity, the United States National Museum (USNM). The latter exists now as little more than the occasional title for the registration activities of the National Museum of Natural History. No. 1 was prepared and printed by J. A. Peters, then Curator-in-Charge of the Division of Amphibians & Reptiles. The availability of a NASA translation service and assorted indices encouraged him to continue the series and distribute these items on an irregular schedule. The series continues under that tradition. Specifically, the SHIS series distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, and unlikely to be published in the normal technical journals. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such an item, please contact George Zug [zugg @ si.edu] for its consideration for distribution through the SHIS series. Our increasingly digital world is changing the manner of our access to research literature and that is now true for SHIS publications. They are distributed now as pdf documents through two Smithsonian outlets: BIODIVERSITY HERITAGE LIBRARY. www.biodiversitylibrary.org/bibliography/15728 All numbers from 1 to 131 [1968-2001] available in BHL. -
Seasonal Reproductive Cycle of the Galápagos Tortoise (Geochelone Nigra) in Captivity
Zoo Biology 17:505–517 (1998) Seasonal Reproductive Cycle of the Galápagos Tortoise (Geochelone nigra) in Captivity David C. Rostal,1* Todd R. Robeck,3 Janice S. Grumbles,1 Patrick M. Burchfield,4 and David Wm. Owens2 1Department of Biology, Georgia Southern University, Statesboro, Georgia 2Department of Biology, Texas A&M University, College Station, Texas 3Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 4Gladys Porter Zoo, Brownsville, Texas The reproductive physiology of nine Galápagos tortoises (Geochelone nigra) was studied from February 1988 to May 1989. The study encompassed the annual reproductive cycle to include complete mating and nesting sequences. Male (n = 4) and female (n = 5) seasonal reproductive changes were determined through- out the study with endocrine analysis and ultrasonographic examinations. Males displayed a prenuptial rise in serum testosterone (x– ± SE = 6.62 ± 0.92 ng/ml in August) during which gonadal maturation and spermatogenesis are thought to occur. The male reproductive cycle appears consistent with the prenuptial sper- matogenic pattern exhibited by other tropical turtles. In the females, testosterone rose during the mating period (x– ± SE = 499.3 ± 124.6 pg/ml in October) prior to ovulation and is probably related to receptivity in the females. Progesterone was more variable, but also peaked during the mating period (x– ± SE = 1,017.2 ± 220.6 pg/ml in October) and appears related to ovulation. Estradiol rose several months prior to mating (x– ± SE = 75.5 ± 11.9 pg/ml in July) and was correlated with increased serum calcium levels. This increase in estradiol is thought to stimu- late vitellogenesis several months prior to mating. -
Herpetological Journal FULL PAPER
Volume 27 (July 2017), 276-286 FULL PAPER Herpetological Journal Published by the British Reinterpretation of the Climatic Adaptation of Giant Fossil Herpetological Society Tortoises in North America Don Moll1 & Lauren E. Brown2 1Department of Biology, Missouri State University, Springfield, Missouri 65897 USA 2School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois 61790-4120 USA “dogmas are brittle structures” Arthur Koestler (1971) Over a half-century ago, C. W. Hibbard proposed a climate theory based on imported living giant tortoises (“Geochelone”) as proxies that suggested the climate adaptations of giant fossil tortoises of the Cenozoic Era (65.5 million years ago to present) were subtropical or tropical across much of North America. This has been a prominent and enduring paleoclimate theory. We show that incorrect assumptions and other problems invalidate this theory. Seven alternative concepts are presented that suggest North American fossil giant tortoises could have evolved necessary adaptations including cold-adaptive morphology, behavioural thermoregulation, burrowing, use of caves as shelters, tolerance of prolonged cessation of food consumption, cryoprotection and supercooling (protection from freezing), and gigantothermy (metabolic and structural thermoregulation) to survive northern winters and in montane areas. This study illustrates the potential danger of using an inappropriate proxy to predict past climates. Key words: Testudinidae; Geochelone; Hesperotestudo; giant tortoises; fossils; climate; morphology; behavioural thermoregulation; burrowing; caves; feeding cessation; cryoprotection; supercooling; gigantothermy; proxies INTRODUCTION tortoises soon died in winter before shelters were provided. At San Diego, “post-mortem examinations” alaeontologists have long had a great interest were performed, but it is unclear if these were done by Pin past climates, as knowledge of climates often a veterinarian. -
Blood Heist Dan Darling
University of New Mexico UNM Digital Repository English Language and Literature ETDs Electronic Theses and Dissertations 6-25-2010 Blood Heist Dan Darling Follow this and additional works at: https://digitalrepository.unm.edu/engl_etds Recommended Citation Darling, Dan. "Blood Heist." (2010). https://digitalrepository.unm.edu/engl_etds/50 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in English Language and Literature ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. i ii BLOOD HEIST BY DAN DARLING BA, English, College of Wooster, 1999 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Fine Arts Creative Writing The University of New Mexico Albuquerque, New Mexico May 2010 iii by ABSTRACT OF DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of The University of New Mexico Albuquerque, New Mexico iv Blood Heist Dan Darling BS, English, College of Wooster, 1999 Master of Fine Arts, Creative Writing, University of New Mexico 2010 Abstract A novel of fiction. John Stick, along with his two best friends, Spartacus Rex and Leon Flowers, rob a blood bank with the intent to sell the blood in Mexico. On the way, the ice cream truck that they have converted to transport the blood breaks down, and they become stranded in the desert. Stick notices that one of the bags of blood belongs to his ex-girlfriend, Cryopathria Rex, with whom he is still in love.